#' Day 08: Seven Segment Search
#'
#' [Seven Segment Search](https://adventofcode.com/2021/day/8)
#'
#' @name day08
#' @rdname day08
#' @details
#'
#' **Part One**
#'
#' You barely reach the safety of the cave when the whale smashes into the
#' cave mouth, collapsing it. Sensors indicate another exit to this cave at
#' a much greater depth, so you have no choice but to press on.
#'
#' As your submarine slowly makes its way through the cave system, you
#' notice that the four-digit [seven-segment
#' displays](https://en.wikipedia.org/wiki/Seven-segment_display) in your
#' submarine are malfunctioning; [they must have been
#' damaged]{title="Yes, just the four-digit seven-segment ones. Whole batch must have been faulty."}
#' during the escape. You\'ll be in a lot of trouble without them, so
#' you\'d better figure out what\'s wrong.
#'
#' Each digit of a seven-segment display is rendered by turning on or off
#' any of seven segments named `a` through `g`:
#'
#' 0: 1: 2: 3: 4:
#' aaaa .... aaaa aaaa ....
#' b c . c . c . c b c
#' b c . c . c . c b c
#' .... .... dddd dddd dddd
#' e f . f e . . f . f
#' e f . f e . . f . f
#' gggg .... gggg gggg ....
#'
#' 5: 6: 7: 8: 9:
#' aaaa aaaa aaaa aaaa aaaa
#' b . b . . c b c b c
#' b . b . . c b c b c
#' dddd dddd .... dddd dddd
#' . f e f . f e f . f
#' . f e f . f e f . f
#' gggg gggg .... gggg gggg
#'
#' So, to render a `1`, only segments `c` and `f` would be turned on; the
#' rest would be off. To render a `7`, only segments `a`, `c`, and `f`
#' would be turned on.
#'
#' The problem is that the signals which control the segments have been
#' mixed up on each display. The submarine is still trying to display
#' numbers by producing output on signal wires `a` through `g`, but those
#' wires are connected to segments *randomly*. Worse, the wire/segment
#' connections are mixed up separately for each four-digit display! (All of
#' the digits *within* a display use the same connections, though.)
#'
#' So, you might know that only signal wires `b` and `g` are turned on, but
#' that doesn\'t mean *segments* `b` and `g` are turned on: the only digit
#' that uses two segments is `1`, so it must mean segments `c` and `f` are
#' meant to be on. With just that information, you still can\'t tell which
#' wire (`b`/`g`) goes to which segment (`c`/`f`). For that, you\'ll need
#' to collect more information.
#'
#' For each display, you watch the changing signals for a while, make a
#' note of *all ten unique signal patterns* you see, and then write down a
#' single *four digit output value* (your puzzle input). Using the signal
#' patterns, you should be able to work out which pattern corresponds to
#' which digit.
#'
#' For example, here is what you might see in a single entry in your notes:
#'
#' acedgfb cdfbe gcdfa fbcad dab cefabd cdfgeb eafb cagedb ab |
#' cdfeb fcadb cdfeb cdbaf
#'
#' (The entry is wrapped here to two lines so it fits; in your notes, it
#' will all be on a single line.)
#'
#' Each entry consists of ten *unique signal patterns*, a `|` delimiter,
#' and finally the *four digit output value*. Within an entry, the same
#' wire/segment connections are used (but you don\'t know what the
#' connections actually are). The unique signal patterns correspond to the
#' ten different ways the submarine tries to render a digit using the
#' current wire/segment connections. Because `7` is the only digit that
#' uses three segments, `dab` in the above example means that to render a
#' `7`, signal lines `d`, `a`, and `b` are on. Because `4` is the only
#' digit that uses four segments, `eafb` means that to render a `4`, signal
#' lines `e`, `a`, `f`, and `b` are on.
#'
#' Using this information, you should be able to work out which combination
#' of signal wires corresponds to each of the ten digits. Then, you can
#' decode the four digit output value. Unfortunately, in the above example,
#' all of the digits in the output value (`cdfeb fcadb cdfeb cdbaf`) use
#' five segments and are more difficult to deduce.
#'
#' For now, *focus on the easy digits*. Consider this larger example:
#'
#' be cfbegad cbdgef fgaecd cgeb fdcge agebfd fecdb fabcd edb |
#' fdgacbe cefdb cefbgd gcbe
#' edbfga begcd cbg gc gcadebf fbgde acbgfd abcde gfcbed gfec |
#' fcgedb cgb dgebacf gc
#' fgaebd cg bdaec gdafb agbcfd gdcbef bgcad gfac gcb cdgabef |
#' cg cg fdcagb cbg
#' fbegcd cbd adcefb dageb afcb bc aefdc ecdab fgdeca fcdbega |
#' efabcd cedba gadfec cb
#' aecbfdg fbg gf bafeg dbefa fcge gcbea fcaegb dgceab fcbdga |
#' gecf egdcabf bgf bfgea
#' fgeab ca afcebg bdacfeg cfaedg gcfdb baec bfadeg bafgc acf |
#' gebdcfa ecba ca fadegcb
#' dbcfg fgd bdegcaf fgec aegbdf ecdfab fbedc dacgb gdcebf gf |
#' cefg dcbef fcge gbcadfe
#' bdfegc cbegaf gecbf dfcage bdacg ed bedf ced adcbefg gebcd |
#' ed bcgafe cdgba cbgef
#' egadfb cdbfeg cegd fecab cgb gbdefca cg fgcdab egfdb bfceg |
#' gbdfcae bgc cg cgb
#' gcafb gcf dcaebfg ecagb gf abcdeg gaef cafbge fdbac fegbdc |
#' fgae cfgab fg bagce
#'
#' Because the digits `1`, `4`, `7`, and `8` each use a unique number of
#' segments, you should be able to tell which combinations of signals
#' correspond to those digits. Counting *only digits in the output values*
#' (the part after `|` on each line), in the above example, there are `26`
#' instances of digits that use a unique number of segments (highlighted
#' above).
#'
#' *In the output values, how many times do digits `1`, `4`, `7`, or `8`
#' appear?*
#'
#' **Part Two**
#'
#' Through a little deduction, you should now be able to determine the
#' remaining digits. Consider again the first example above:
#'
#' acedgfb cdfbe gcdfa fbcad dab cefabd cdfgeb eafb cagedb ab |
#' cdfeb fcadb cdfeb cdbaf
#'
#' After some careful analysis, the mapping between signal wires and
#' segments only make sense in the following configuration:
#'
#' dddd
#' e a
#' e a
#' ffff
#' g b
#' g b
#' cccc
#'
#' So, the unique signal patterns would correspond to the following digits:
#'
#' - `acedgfb`: `8`
#' - `cdfbe`: `5`
#' - `gcdfa`: `2`
#' - `fbcad`: `3`
#' - `dab`: `7`
#' - `cefabd`: `9`
#' - `cdfgeb`: `6`
#' - `eafb`: `4`
#' - `cagedb`: `0`
#' - `ab`: `1`
#'
#' Then, the four digits of the output value can be decoded:
#'
#' - `cdfeb`: `5`
#' - `fcadb`: `3`
#' - `cdfeb`: `5`
#' - `cdbaf`: `3`
#'
#' Therefore, the output value for this entry is `5353`.
#'
#' Following this same process for each entry in the second, larger example
#' above, the output value of each entry can be determined:
#'
#' - `fdgacbe cefdb cefbgd gcbe`: `8394`
#' - `fcgedb cgb dgebacf gc`: `9781`
#' - `cg cg fdcagb cbg`: `1197`
#' - `efabcd cedba gadfec cb`: `9361`
#' - `gecf egdcabf bgf bfgea`: `4873`
#' - `gebdcfa ecba ca fadegcb`: `8418`
#' - `cefg dcbef fcge gbcadfe`: `4548`
#' - `ed bcgafe cdgba cbgef`: `1625`
#' - `gbdfcae bgc cg cgb`: `8717`
#' - `fgae cfgab fg bagce`: `4315`
#'
#' Adding all of the output values in this larger example produces `61229`.
#'
#' For each entry, determine all of the wire/segment connections and decode
#' the four-digit output values. *What do you get if you add up all of the
#' output values?*
#'
#' @param x some data
#' @return For Part One, `f08a_count_1478s(x)` returns the number of 1, 4, 7,and
#' 8s in the output digits. For Part Two, `f08b_solve_and_sum_output(x)`
#' returns returns the sum of output digits.
#' @export
#' @examples
#' f08a_count_1478s(example_data_08())
#' f08b_solve_and_sum_output(example_data_08())
f08a_count_1478s <- function(x) {
# strategy: split-apply-combine
output <- strsplit(x, " \\| ") |>
lapply(function(x) x[[2]]) |>
lapply(strsplit, " ") |>
lapply(unlist)
counts <- output |>
unlist() |>
nchar() |>
table()
number_of_1478s <- counts[c("2", "4", "3" , "7")] |> sum()
number_of_1478s
}
#' @rdname day08
#' @export
f08b_solve_and_sum_output <- function(x) {
# strategy: set operations
characterize <- function(x) {
unlist(strsplit(x, ""))
}
solve_digit_set <- function(d) {
# find uniquely length-ed characters
chars <- list()
chars$c1 <- d[which(nchar(d) == 2)] |> characterize()
chars$c4 <- d[which(nchar(d) == 4)] |> characterize()
chars$c7 <- d[which(nchar(d) == 3)] |> characterize()
chars$c8 <- d[which(nchar(d) == 7)] |> characterize()
map_mystery <- d |> lapply(characterize)
positions <- numeric(7)
# solve for top row
positions[1] <- chars$c7 |>
setdiff(chars$c1)
# if you remove the right side, then all the four unit
# digits will intersect on top row and bottom_row
positions[7] <- map_mystery |>
lapply(setdiff, chars$c1) |>
f_filter(function(x) length(x) == 4) |>
f_reduce(intersect) |>
setdiff(positions[1])
# middle row: subtract top, bottom and 1's pieces from 3
positions[4] <- map_mystery |>
lapply(setdiff, chars$c1) |>
lapply(setdiff, c(positions[1], positions[7])) |>
f_filter(function(x) length(x) == 1) |>
unlist()
positions[2] <- chars$c4 |>
setdiff(c(positions[4], chars$c1))
# find a unique side in 5
positions[6] <- map_mystery |>
lapply(setdiff, c(positions[c(1, 2, 4, 7)])) |>
f_filter(function(x) length(x) == 1) |>
unlist()
# find the side not in 1 or 5
positions[5] <- map_mystery |>
lapply(setdiff, c(positions, chars$c1)) |>
f_filter(function(x) length(x) == 1) |>
unlist() |>
unique()
# one unknown side leftover
positions[3] <- setdiff(letters[1:7], positions)
positions
}
convert_string_to_digit <- function(s, positions) {
key <- list()
key$s0 <- c(1, 2, 3, 5, 6, 7)
key$s1 <- c( 3, 6 )
key$s2 <- c(1, 3, 4, 5, 7)
key$s3 <- c(1, 3, 4, 6, 7)
key$s4 <- c( 2, 3, 4, 6 )
key$s5 <- c(1, 2, 4, 6, 7)
key$s6 <- c(1, 2, 4, 5, 6, 7)
key$s7 <- c(1, 3, 6 )
key$s8 <- c(1, 2, 3, 4, 5, 6, 7)
key$s9 <- c(1, 2, 3, 4, 6, 7)
sides <- characterize(s) |> match(positions) |> sort() |> as.numeric()
l <- c(unname(key), list(sides)) |>
anyDuplicated(fromLast = TRUE)
# zero is in position one
l - 1
}
convert_strings_to_digits <- Vectorize(convert_string_to_digit, "s")
solve_line <- function(digits, outputs) {
positions <- solve_digit_set(digits)
output_digits <- convert_strings_to_digits(outputs, positions)
sum(output_digits * c(1000, 100, 10, 1))
}
# x <- example_data_08()
digit_set <- strsplit(x, " \\| ") |>
lapply(strsplit, " ") |>
lapply(function(x) x[[1]])
output_set <- strsplit(x, " \\| ") |>
lapply(strsplit, " ") |>
lapply(function(x) x[[2]])
Map(solve_line, digit_set, output_set) |>
unlist() |>
sum()
}
#' @param example Which example data to use (by position or name). Defaults to
#' 1.
#' @rdname day08
#' @export
example_data_08 <- function(example = 1) {
l <- list(
a = c(
"acedgfb cdfbe gcdfa fbcad dab cefabd cdfgeb eafb cagedb ab | cdfeb fcadb cdfeb cdbaf"
),
b = c(
"be cfbegad cbdgef fgaecd cgeb fdcge agebfd fecdb fabcd edb | fdgacbe cefdb cefbgd gcbe",
"edbfga begcd cbg gc gcadebf fbgde acbgfd abcde gfcbed gfec | fcgedb cgb dgebacf gc",
"fgaebd cg bdaec gdafb agbcfd gdcbef bgcad gfac gcb cdgabef | cg cg fdcagb cbg",
"fbegcd cbd adcefb dageb afcb bc aefdc ecdab fgdeca fcdbega | efabcd cedba gadfec cb",
"aecbfdg fbg gf bafeg dbefa fcge gcbea fcaegb dgceab fcbdga | gecf egdcabf bgf bfgea",
"fgeab ca afcebg bdacfeg cfaedg gcfdb baec bfadeg bafgc acf | gebdcfa ecba ca fadegcb",
"dbcfg fgd bdegcaf fgec aegbdf ecdfab fbedc dacgb gdcebf gf | cefg dcbef fcge gbcadfe",
"bdfegc cbegaf gecbf dfcage bdacg ed bedf ced adcbefg gebcd | ed bcgafe cdgba cbgef",
"egadfb cdbfeg cegd fecab cgb gbdefca cg fgcdab egfdb bfceg | gbdfcae bgc cg cgb",
"gcafb gcf dcaebfg ecagb gf abcdeg gaef cafbge fdbac fegbdc | fgae cfgab fg bagce"
)
)
l[[example]]
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.