#### OK estimate_psYpredMR ####################################################
#' Estimator psYpredMR
#'
#' Function that implements estimator psYpredMR
#' @inheritParams estimate_psYpred
#' @inheritParams estimate_wtd
#' @family estimators
#' @family MR-estimators
#' @export
estimate_psYpredMR <- function(
data,
s.wt.var = NULL,
cross.world = "10",
effect.scale = "additive",
boot.num = 999,
boot.seed = NULL,
boot.method = "cont-wt",
boot.stratify = TRUE,
a.c.form,
a.cm.form,
max.stabilized.wt = 30,
plot = TRUE,
c.std = NULL,
m.std = NULL,
c.order = NULL,
m.order = NULL,
y.c.form = NULL,
y.c1.form = NULL,
y.c0.form = NULL,
y.cm.form = NULL,
y.cm1.form = NULL,
y.cm0.form = NULL,
y.link = "gaussian") {
# CLEAN INPUTS
c.vars <- m.vars <- y.family <- NULL
.prep_psYpredMR()
key.inputs <- mget(c("cross.world",
"effect.scale",
"a.c.form",
"a.cm.form",
"max.stabilized.wt",
"y.c1.form",
"y.c0.form",
"y.cm1.form",
"y.cm0.form",
"y.family"))
# POINT ESTIMATION
if (!plot) {
estimates <- do.call(".point_est.psYpredMR",
c(key.inputs, list(data = data,
output.data = FALSE)))
} else {
tmp <- do.call(".point_est.psYpredMR",
c(key.inputs, list(data = data,
output.data = TRUE)))
estimates <- tmp$estimates
plots <- .plot_psYpredMR(w.dat = tmp$w.dat,
cross.world = cross.world,
c.vars = c.vars,
m.vars = m.vars,
c.std = c.std,
m.std = m.std); rm(tmp)
}
# BOOTSTRAP
if (boot.num > 0) {
ci.se <- .boot_ci.se(data = data,
stratify = boot.stratify,
boot.num = boot.num,
seed = boot.seed,
method = boot.method,
FUN = ".point_est.psYpredMR",
FUN.inputs = key.inputs)
estimates <- cbind(estimate = estimates,
ci.se)
rm(ci.se)
}
# OUTPUT
if (!plot && boot.num==0) return(estimates)
out <- list(estimates = estimates)
if (boot.num > 0) out$boot.seed <- boot.seed
if (plot) out$plots <- plots
out
}
#### OK .prep_psYpredMR #######################################################
#' @rdname dot-prep
#' @order 8
.prep_psYpredMR <- function() {
top.env <- parent.frame()
.setup_data(top.env)
.clean_cross.world(top.env)
.clean_effect.scale(top.env)
.clean_boot(top.env)
.clean_weights.med(top.env)
.clean_y.psYpredMR(top.env)
if (top.env$plot) .check_plot.med(top.env)
}
#### OK .clean_y.psYpredMR ##############################################
#' @rdname dot-clean_y
#' @order 4
#'
.clean_y.psYpredMR <- function(env) {
yes10 <- ("10" %in% env$cross.world)
yes01 <- ("01" %in% env$cross.world)
in_c.vars <- env$c.vars
in_m.vars <- env$m.vars
y.c <- env$y.c.form
y.cm <- env$y.cm.form
y.link <- env$y.link
# populate formulas
if (is.null(y.c)) {
if (yes10 && is.null(env$y.c1.form))
stop("Must specify either y.c1.form or y.c.form.")
if (yes01 && is.null(env$y.c0.form))
stop("Must specify either y.c0.form or y.c.form.")
} else {
if (yes10 && is.null(env$y.c1.form))
env$y.c1.form <- y.c
if (yes01 && is.null(env$y.c0.form))
env$y.c0.form <- y.c
}
if (is.null(y.cm)) {
if (yes10 && is.null(env$y.cm1.form))
stop("Must specify either y.cm1.form or y.cm.form.")
if (yes01 && is.null(env$y.cm0.form))
stop("Must specify either y.cm0.form or y.cm.form.")
} else {
if (yes10 && is.null(env$y.cm1.form))
env$y.cm1.form <- y.cm
if (yes01 && is.null(env$y.cm0.form))
env$y.cm0.form <- y.cm
}
# check y.var, c.vars, m.vars
y.var <- NULL
c.vars <- NULL
m.vars <- NULL
if (yes10) {
y.var <- unique(c(y.var,
all.vars(formula(env$y.c1.form)[[2]]),
all.vars(formula(env$y.cm1.form)[[2]])))
c.vars <- unique(c(c.vars,
all.vars(formula(env$y.c1.form)[[3]])))
}
if (yes01) {
y.var <- unique(c(y.var,
all.vars(formula(env$y.c0.form)[[2]]),
all.vars(formula(env$y.cm0.form)[[2]])))
c.vars <- unique(c(c.vars,
all.vars(formula(env$y.c0.form)[[3]])))
}
if (length(y.var)>1)
stop("Outcome variable is not unique across outcome models.")
env$data$.y <- env$data[, y.var]
stray.c <- setdiff(c.vars, in_c.vars)
if (length(stray.c)>0)
stop(paste("Covariate(s)",
paste(stray.c, collapse = ", "),
"(that appear in outcome given covariates model(s)) are not found in a.c.form."))
if (yes10)
m.vars <- unique(c(m.vars,
setdiff(all.vars(formula(env$y.cm1.form)[[3]]),
in_c.vars)))
if (yes01)
m.vars <- unique(c(m.vars,
setdiff(all.vars(formula(env$y.cm0.form)[[3]]),
in_c.vars)))
stray.m <- setdiff(m.vars, in_m.vars)
if (length(stray.m)>0)
stop(paste("Mediator(s)",
paste(stray.m, collapse = ", "),
"(that appear in outcome model(s)) are not part of the mediators based on a.c.form and a.cm.form."))
# y.link -> y.family
if (!(y.link %in% c("identity", "logit", "logistic", "log")))
stop("y.link not recognized or supported. Supported options include: \"identity\" (for linear model with numeric outcome), \"logit\" (for binary outcome or outcome bounded in (0,1) interval), and \"log\" (for non-negative outcome).")
if (length(unique(env$data$.y))==2) {
if (!(y.link %in% c("logit", "logistic")))
warning("The outcome is binary. Logit model is used.")
env$y.family <- "quasibinomial"
} else if (is.numeric(env$data$.y) && all(env$data$.y>=0)) {
if (y.link=="log") {
env$y.family <- "quasipoisson"
} else if (y.link=="identity") {
env$y.family <- "gaussian"
} else if (all(env$data$.y<=1)) {
env$y.family <- "quasibinomial"
} else {
warning("Logit link not allowed for outcome that is non-binary and not bounded in the (0,1) interval. Identity link is used instead. May also consider log link.")
env$y.family <- "gaussian"
}
} else if (is.numeric(env$data$.y)) {
if (!y.link=="identity")
warning("Outcome is numeric variable with negative values. Identity link is used.")
env$y.family <- "gaussian"
} else
stop("Outcome type not supported.")
}
#### OK .point_est.psYpredMR ##################################################
#' @rdname dot-point_est
#' @order 3
.point_est.psYpredMR <- function(
data,
cross.world,
effect.scale,
a.c.form,
a.cm.form,
max.stabilized.wt = 30,
output.data = FALSE,
y.c1.form,
y.c0.form,
y.cm1.form,
y.cm0.form,
y.family
) {
dat <- .compute_weights.med(
data = data,
cross.world = cross.world,
a.c.form = a.c.form,
a.cm.form = a.cm.form,
max.stabilized.wt = max.stabilized.wt
)
rm(data)
estimates <- NULL
if ("10" %in% cross.world) {
p00 <- dat[dat$.samp=="p00", ]
y.c1.p11 <- glm(formula = y.c1.form,
data = dat[dat$.samp=="p11", ],
weights = data$.f.wt,
family = y.family)
y.cm1.p10 <- glm(formula = y.cm1.form,
data = dat[dat$.samp=="p10", ],
weights = data$.f.wt,
family = y.family)
pred10 <- p00[".f.wt"]
pred10$p00 <- p00$.y
pred10$p10 <- predict(y.cm1.p10, newdata = p00, type = "response")
pred10$p11 <- predict(y.c1.p11, newdata = p00, type = "response")
pred10 <- .reshape_gather(pred10, columns = c("p00", "p10", "p11"),
key = ".samp",
value = ".y",
wide.row = FALSE)
estimates <- c(estimates,
.get_means.and.effects(w.dat = pred10,
effect.scale = effect.scale))
}
if ("01" %in% cross.world) {
p11 <- dat[dat$.samp=="p11", ]
y.c0.p00 <- glm(formula = y.c0.form,
data = dat[dat$.samp=="p00", ],
weights = data$.f.wt,
family = y.family)
y.cm0.p01 <- glm(formula = y.cm0.form,
data = dat[dat$.samp=="p01", ],
weights = data$.f.wt,
family = y.family)
pred01 <- p11[".f.wt"]
pred01$p11 <- p11$.y
pred01$p01 <- predict(y.cm0.p01, newdata = p11, type = "response")
pred01$p00 <- predict(y.c0.p00, newdata = p11, type = "response")
pred01 <- .reshape_gather(pred01, columns = c("p00", "p01", "p11"),
key = ".samp",
value = ".y",
wide.row = FALSE)
estimates <- c(estimates,
.get_means.and.effects(w.dat = pred01,
effect.scale = effect.scale))
}
if (!output.data) return(estimates)
list(estimates = estimates,
w.dat = dat)
}
#### OK .plot_psYpredMR #######################################################
#' @rdname dot-plot_w.dat
#' @order 5
#' @param cross.world blah
.plot_psYpredMR <- function(w.dat,
cross.world,
c.vars,
m.vars,
c.std,
m.std) {
c(.plot_wt_dist(w.dat),
.plot_balance.psYpredMR(w.dat = w.dat,
cross.world = cross.world,
c.vars = c.vars,
m.vars = m.vars,
c.std = c.std,
m.std = m.std))
}
#### OK .plot_balance.psYpredMR ###############################################
#' @rdname dot-plot_balance
#' @order 5
#' @param cross.world (For \code{plot_balance.psYpredMR}) blah
.plot_balance.psYpredMR <- function(w.dat,
cross.world,
c.vars,
m.vars,
c.std,
m.std) {
smd.dat <- .get_smd.med(w.dat = w.dat,
c.vars = c.vars,
m.vars = m.vars,
c.std = c.std,
m.std = m.std)
full.balance <-
ggplot(data = smd.dat,
aes(x = .data$mean.diff,
y = factor(.data$variable,
levels = rev(levels(.data$variable))))) +
geom_vline(xintercept = 0,
color = "gray60") +
geom_point(aes(color = .data$var.type,
shape = .data$contrast.type),
fill = "white",
size = 1.5,
stroke = .5) +
labs(x = "differences in means",
y = "") +
scale_color_manual(name = "", values = c("black", "magenta")) +
scale_shape_manual(name = "", values = c(21, 19)) +
theme_bw() +
xlim(min(c(-.3, smd.dat$mean.diff)),
max(c( .3, smd.dat$mean.diff))) +
facet_wrap(~.data$contrast, ncol = 3)
if (all(c("10", "01") %in% cross.world)) {
smd.dat <- smd.dat[smd.dat$contrast %in% c("p00 - full",
"p11 - full"), ]
} else if (cross.world=="10") {
smd.dat <- smd.dat[smd.dat$contrast=="p00 - full", ]
} else if (cross.world=="01") {
smd.dat <- smd.dat[smd.dat$contrast=="p11 - full", ]
}
key.balance <-
ggplot(data = smd.dat,
aes(x = .data$mean.diff,
y = factor(.data$variable,
levels = rev(levels(.data$variable))))) +
geom_vline(xintercept = 0,
color = "gray60") +
geom_point(aes(shape = .data$contrast.type),
fill = "white",
size = 1.5,
stroke = .5) +
labs(x = "differences in means",
y = "") +
scale_shape_manual(name = "", values = c(21, 19)) +
theme_bw() +
xlim(min(c(-.3, smd.dat$mean.diff)),
max(c( .3, smd.dat$mean.diff))) +
facet_wrap(~.data$contrast, ncol = 2)
mget(c("key.balance", "full.balance"))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.