library(keras)
library(raster)
library(coolit.train)
library(parallel)
library(sf)
library(data.table)
library(fs)
slice_dir <- "data/curated-training-slices/nj-nearmap/nj-nearmap-slices"
out_dir <- "D:/wfu3/coolit.train/output/2019-05-28/nj-nearmap-scores/"
all_slices <- fs::dir_ls(slice_dir, type = "file")
all_slices_info <- fs::file_info(all_slices)
all_slices_size <- fs::fs_bytes(sum(all_slices_info$size))
num_chunks <- ceiling(all_slices_size / "333G")
all_slices_chunks <- split(all_slices, ifelse(
(seq_along(all_slices) / length(all_slices)) <= .33,
1,
ifelse((seq_along(all_slices) / length(all_slices)) > .33 &
(seq_along(all_slices) / length(all_slices)) <= .66,
2,
3)
)
)
for (i in seq_along(all_slices_chunks)) {
cat(i, "\n")
file_delete(
dir_ls("D:/wfu3/coolit.train/source_from-nj-nearmap-website/nj-nearmap-slices",
type = "file")
)
file_copy(all_slices_chunks[[i]],
"D:/wfu3/coolit.train/source_from-nj-nearmap-website/nj-nearmap-slices"
)
scores <- score_slice_data_dir(
slice_data_dir = "D:/wfu3/coolit.train/source_from-nj-nearmap-website/nj-nearmap-slices",
model_params_dput_file = file.path("output/multi-model-runs/2019-05-28/models",
"2019-05-28_16-03-07/run-parameters_dput.txt"),
model_h5_weights = file.path("output/multi-model-runs/2019-05-28/models",
"2019-05-28_16-03-07/model_fine-tune-2.h5"),
score_outdir = out_dir,
return_score = FALSE
)
# collate scores
my_scores_files <- list.files(out_dir, full.names = TRUE)
my_scores_id <- make_split_index(length(my_scores_files), 20)
my_scores_list <- split(my_scores_files, my_scores_id)
cl <- parallel::makeCluster(20)
parallel::clusterEvalQ(cl, {
library(data.table)
})
my_scores <- parallel::parLapply(
X = my_scores_list,
cl = cl,
fun = function(x) {
temp <- lapply(x, function(y) {
temp <- readRDS(y)
temp <- data.table(temp[["slice_data"]])
temp$img_id <- y
tryCatch({
temp$geometry <- do.call("c", temp$geometry)
},
error = function(e) browser())
list(
lte001 = temp[predicted_probs <= 0.001],
gt001 = temp[predicted_probs > 0.001]
)
})
list(
lte001 = rbindlist(lapply(temp, function(z) z[["lte001"]])),
gt001 = rbindlist(lapply(temp, function(z) z[["gt001"]]))
)
})
parallel::stopCluster(cl)
# save scores <= 0.001
my_scores_lte001 <- rbindlist(lapply(my_scores, function(x) x[["lte001"]]))
my_scores_lte001$geometry <- st_sfc(my_scores_lte001$geometry)
my_scores_lte001 <- st_sf(my_scores_lte001)
saveRDS(my_scores_lte001,
paste0(out_dir, "/nj-nearmap-scores-lte001_chunk", i, ".rds"))
rm(my_scores_lte001)
gc()
# save scores > 0.001
my_scores_gt001 <- rbindlist(lapply(my_scores, function(x) x[["gt001"]]))
my_scores_gt001$geometry <- st_sfc(my_scores_gt001$geometry)
my_scores_gt001 <- st_sf(my_scores_gt001)
saveRDS(my_scores_gt001,
paste0(out_dir, "/nj-nearmap-scores-gt001_chunk", i, ".rds"))
rm(my_scores_gt001)
rm(my_scores)
gc()
file_move(
dir_ls(out_dir, type = "file"),
"output/2019-05-28/nj-nearmap-scores"
)
file_delete(
dir_ls("D:/wfu3/coolit.train/source_from-nj-nearmap-website/nj-nearmap-slices",
type = "file")
)
}
# collate scores
my_scores <- lapply(1:3, function(i) {
data.table(
readRDS(
paste0(
"output/2019-05-28/nj-nearmap-scores/nj-nearmap-scores-gt001_chunk", i, ".rds"
)
)
)
})
my_scores <- rbindlist(my_scores)
saveRDS(my_scores,
"output/2019-05-28/nj-nearmap-scores/nj-nearmap-scores-gt001.rds")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.