R/forecastBATS.R

# TODO: Add comment
# 
# Author: srazbash
###############################################################################


forecast.bats <- function(object, h=10, level=c(80,95), fan=FALSE, ...) 
{
	if(h<=0) {
		stop("Forecast horizon out of bounds")
	}
	if(fan) {
		level <- seq(51,99,by=3)
	}
  	if(any(class(object$y) == "ts")) {
		ts.frequency <- frequency(object$y)
	} else {
		ts.frequency <- ifelse(!is.null(object$seasonal.periods), max(object$seasonal.periods), 1)
	}

	#if(!is.null(object$lambda)) {
	#	y <- BoxCox(y, lambda=object$lambda)
	#}
	x <- matrix(0,nrow=nrow(object$x), ncol=h)
	y.forecast <- numeric(h)
	#w <- makeWMatrix(small.phi=object$damping.parameter, seasonal.periods=object$seasonal.periods, ar.coefs=object$ar.coefficients, ma.coefs=object$ma.coefficients)
	w <- .Call("makeBATSWMatrix", smallPhi_s = object$damping.parameter, sPeriods_s = object$seasonal.periods, arCoefs_s = object$ar.coefficients, maCoefs_s = object$ma.coefficients, PACKAGE = "forecast")
	#g <- makeGMatrix(alpha=object$alpha, beta=object$beta, gamma.vector=object$gamma.values, seasonal.periods=object$seasonal.periods, p=length(object$ar.coefficients), q=length(object$ma.coefficients))
	g <- .Call("makeBATSGMatrix", object$alpha, object$beta, object$gamma.values, object$seasonal.periods, length(object$ar.coefficients), length(object$ma.coefficients), PACKAGE="forecast")
	
	F <- makeFMatrix(alpha=object$alpha, beta=object$beta, small.phi=object$damping.parameter, seasonal.periods=object$seasonal.periods, gamma.bold.matrix=g$gamma.bold.matrix, ar.coefs=object$ar.coefficients, ma.coefs=object$ma.coefficients)
	
	y.forecast[1] <- w$w.transpose %*% object$x[,ncol(object$x)]
	x[,1] <- F %*% object$x[,ncol(object$x)] + g$g %*% object$errors[length(object$errors)]
	
	for(t in 2:h) {
		x[,t] <- F %*% x[,(t-1)]
		y.forecast[t] <- w$w.transpose %*% x[,(t-1)]
	}
	
	##Make prediction intervals here
	lower.bounds <- upper.bounds <- matrix(NA,ncol=length(level),nrow=h)
	variance.multiplier <- numeric(h)
	variance.multiplier[1] <- 1
	if(h > 1) {
		for(j in 1:(h-1)) {
			if(j == 1) {
				f.running <- diag(ncol(F))
			} else {
				f.running <- f.running %*% F
			}				
			c.j <- w$w.transpose %*% f.running %*% g$g 
			variance.multiplier[(j+1)] <- variance.multiplier[j]+ c.j^2
		}
	}
	
	variance <- object$variance * variance.multiplier
	#print(variance)
	st.dev <- sqrt(variance)
	for(i in 1:length(level)) {
		marg.error <- st.dev * abs(qnorm((100-level[i])/200))
		lower.bounds[,i] <- y.forecast - marg.error
		upper.bounds[,i] <- y.forecast + marg.error
		
	}
	#Inv Box Cox transform if required
	if(!is.null(object$lambda))
	{
		y.forecast <- InvBoxCox(y.forecast,object$lambda)
		lower.bounds <- InvBoxCox(lower.bounds,object$lambda)
		if(object$lambda < 1) {
			lower.bounds<-pmax(lower.bounds, 0)	
		}
		upper.bounds <- InvBoxCox(upper.bounds,object$lambda)
	}
	##Calc a start time for the forecast
  	start.time <- start(object$y)
	y <- ts(c(object$y,0), start=start.time, frequency=ts.frequency)
	fcast.start.time <- end(y)
	#Make msts object for x and mean
	x <- msts(object$y, seasonal.periods=(if(!is.null(object$seasonal.periods)) { object$seasonal.periods} else { ts.frequency}), ts.frequency=ts.frequency, start=start.time)
	fitted.values <- msts(object$fitted.values, seasonal.periods=(if(!is.null(object$seasonal.periods)) { object$seasonal.periods} else { ts.frequency}), start=start.time)
	y.forecast <- msts(y.forecast, seasonal.periods=(if(!is.null(object$seasonal.periods)) { object$seasonal.periods} else { ts.frequency}), start=fcast.start.time)
		
	forecast.object <- list(model=object, mean=y.forecast, level=level, x=x, upper=upper.bounds, lower=lower.bounds, fitted=fitted.values, method=makeText(object), residuals=object$errors)
	class(forecast.object) <- "forecast"
	return(forecast.object)
}


makeText <- function(object) {
	name <- "BATS("
	if(!is.null(object$lambda)) {
		name <- paste(name, round(object$lambda, digits=3), sep="")
	} else {
		name <- paste(name, "1", sep="")
	}
	name <- paste(name, ", {", sep="")
	if(!is.null(object$ar.coefficients)) {
		name <- paste(name, length(object$ar.coefficients), sep="")
	} else {
		name <- paste(name, "0", sep="")
	}
	name <- paste(name, ",", sep="")
	if(!is.null(object$ma.coefficients)) {
		name <- paste(name, length(object$ma.coefficients), sep="")
	} else {
		name <- paste(name, "0", sep="")
	}
	name <- paste(name, "}, ", sep="")
	if(!is.null(object$damping.parameter)) {
		name <- paste(name, round(object$damping.parameter, digits=3), sep="")
	} else {
		name <- paste(name, "-", sep="")
	}
	name <- paste(name, ", ", sep="")
	if(!is.null(object$seasonal.periods)) {
    name <- paste(name,"{",sep="")
		for(i in object$seasonal.periods) {
			name <- paste(name, i, sep="")
			if(i != object$seasonal.periods[length(object$seasonal.periods)]) {
				name <- paste(name, ",", sep="")
			} else {
				name <- paste(name, "})", sep="")
			}
		}
	} else {
		name <- paste(name, "-)", sep="")	
	}
	return(name)
}
ttnsdcn/forecast-package documentation built on June 1, 2019, 2:49 a.m.