##########################################################################################
# Designed and developed by Tinniam V Ganesh
# Date : 25 Dec 2022
# Function: winProbabilityDL
# This function computes the ball by ball win probability using Deep Learning Keras
#
###########################################################################################
#' @title
#' Plot the win probability using Deep Learning model
#'
#' @description
#' This function plots the win probability of the teams in a T20 match
#'
#' @usage
#' winProbabilityDL(match,t1,t2,plot=1)
#'
#' @param match
#' The dataframe of the match
#'
#' @param t1
#' The 1st team of the match
#'
#' @param t2
#' the 2nd team in the match
#'
#' @param plot
#' Plot=1 (static), Plot=2(interactive)
#'
#' @return none
#'
#' @references
#' \url{https://cricsheet.org/}\cr
#' \url{https://gigadom.in/}\cr
#' \url{https://github.com/tvganesh/yorkrData/}
#'
#' @author
#' Tinniam V Ganesh
#' @note
#' Maintainer: Tinniam V Ganesh \email{tvganesh.85@gmail.com}
#'
#' @examples
#' \dontrun{
#' #Get the match details
#' a <- getMatchDetails("England","Pakistan","2006-09-05",dir="../temp")
#'
#' # Plot tne match worm plot
#' winProbabilityDL(a,'England',"Pakistan")
#' }
#' @seealso
#' \code{\link{getBatsmanDetails}}\cr
#' \code{\link{getBowlerWicketDetails}}\cr
#' \code{\link{batsmanDismissals}}\cr
#' \code{\link{getTeamBattingDetails}}\cr
#'
#' @export
#'
winProbabilityDL <- function(match,t1,t2,plot=1){
team=ball=totalRuns=wicketPlayerOut=ballsRemaining=runs=numWickets=runsMomentum=perfIndex=isWinner=NULL
predict=ml_model=winProbability=ggplotly=runs=runRate=batsman=bowler=NULL
batsmanIdx=bowlerIdx=NULL
if (match$winner[1] == "NA") {
print("Match no result ************************")
return()
}
team1Size=0
requiredRuns=0
# Read batsman, bowler vectors
batsmanMap=readRDS("batsmanMap.rds")
bowlerMap=readRDS("bowlerMap.rds")
teams=unique(match$team)
teamA=teams[1]
# Filter the performance of team1
a <-filter(match,team==teamA)
#Balls in team 1's innings
ballsIn1stInnings= dim(a)[1]
b <- select(a,batsman, bowler,ball,totalRuns,wicketPlayerOut,team1,team2,date)
c <-mutate(b,ball=gsub("1st\\.","",ball))
# Compute the total runs scored by team
d <- mutate(c,runs=cumsum(totalRuns))
# Check if team1 won or lost the match
if(match$winner[1]== teamA){
d$isWinner=1
} else{
d$isWinner=0
}
#Get the ball num
d$ballNum = seq.int(nrow(d))
# Compute the balls remaining for the team
d$ballsRemaining = ballsIn1stInnings - d$ballNum +1
# Wickets lost by team
d$wicketNum = d$wicketPlayerOut != "nobody"
d=d %>% mutate(numWickets=cumsum(d$wicketNum==TRUE))
#Performance index is based on run rate (runs scored/ ball number) with wickets in hand
d$perfIndex = (d$runs/d$ballNum) * (11 - d$numWickets)
# Compute run rate
d$runRate = (d$runs/d$ballNum)
d$runsMomentum = (11 - d$numWickets)/d$ballsRemaining
df8 = select(d, batsman,bowler,ballNum, ballsRemaining, runs, runRate,numWickets,runsMomentum,perfIndex, isWinner)
df9=left_join(df8,batsmanMap)
df9=left_join(df9,bowlerMap)
dfa = select(df9, batsmanIdx,bowlerIdx,ballNum,ballsRemaining,runs,runRate,numWickets,
runsMomentum,perfIndex, isWinner)
print(dim(dfa))
#############################################################################################
######## Team 2
# Compute for Team 2
# Required runs is the team made by team 1 + 1
requiredRuns=d[dim(d)[1],]$runs +1
teamB=teams[2]
# Filter the performance of team1
a1 <-filter(match,team==teamB)
#Balls in team 1's innings
ballsIn2ndInnings= dim(a1)[1] + 1
b1 <- select(a1,batsman,bowler,ball,totalRuns,wicketPlayerOut,team1,team2,date)
c1 <-mutate(b1,ball=gsub("2nd\\.","",ball))
# Compute total Runs
d1 <- mutate(c1,runs=cumsum(totalRuns))
# Check of team2 is winner
if(match$winner[1]== teamB){
d1$isWinner=1
} else{
d1$isWinner=0
}
# Compute ball number
d1$ballNum= ballsIn1stInnings + seq.int(nrow(d1))
# Compute remaining balls in 2nd innings
d1$ballsRemaining= ballsIn2ndInnings - seq.int(nrow(d1))
# Compute wickets remaining
d1$wicketNum = d1$wicketPlayerOut != "nobody"
d1=d1 %>% mutate(numWickets=cumsum(d1$wicketNum==TRUE))
ballNum=d1$ballNum - ballsIn1stInnings
#Performance index is based on run rate (runs scored/ ball number) with wickets in hand
d1$perfIndex = (d1$runs/ballNum) * (11 - d1$numWickets)
#Compute required runs
d1$requiredRuns = requiredRuns - d1$runs
d1$runRate = (d1$requiredRuns/d1$ballsRemaining)
d1$runsMomentum = (11 - d1$numWickets)/d1$ballsRemaining
# Rename required runs as runs
df10 = select(d1,batsman,bowler,ballNum,ballsRemaining, requiredRuns,runRate,numWickets,runsMomentum,perfIndex, isWinner)
names(df10) =c("batsman","bowler","ballNum","ballsRemaining","runs","runRate","numWickets","runsMomentum","perfIndex","isWinner")
print(dim(df10))
df11=left_join(df10,batsmanMap)
df11=left_join(df11,bowlerMap)
df2=rbind(df9,df11)
dfb = select(df11, batsmanIdx,bowlerIdx,ballNum,ballsRemaining,runs,runRate,numWickets,
runsMomentum,perfIndex, isWinner)
print(dim(dfb))
# load the model
m=predict(dl_model,dfa,type = "prob")
m1=m*100
m2=matrix(m1)
n=predict(dl_model,dfb,type="prob")
n1=n*100
n2=matrix(n1)
m3= 100-n2
n3=100-m2
team1=rbind(m2,m3)
team2=rbind(n3,n2)
team11=as.data.frame(cbind(df2$ballNum,team1))
names(team11) = c("ballNum","winProbability")
team22=as.data.frame(cbind(df2$ballNum,team2))
names(team22) = c("ballNum","winProbability")
# Add labels to chart team 1
#Mark when players were dismissed
k <- cbind(b,m1)
k$ballNum = seq.int(nrow(k))
k1= filter(k,wicketPlayerOut != "nobody")
k2 = select(k1,ballNum,m1,wicketPlayerOut)
#print(k2)
# Mark when batsman started
batsmen = unique(k$batsman)
p = data.frame(matrix(nrow = 0, ncol = dim(k[2])))
for(bman in batsmen){
l <-k %>% filter(batsman == bman)
n=l[1,]
p=rbind(p,n)
}
p1 = select(p,ballNum,m1,batsman)
#print(p1)
# Add labels to team 2
#Mark when players were dismissed
r <- cbind(b1,n1)
r$ballNum = seq.int(nrow(r))
r1= filter(r,wicketPlayerOut != "nobody")
r2 = select(r1,ballNum,n1,wicketPlayerOut)
# Mark when batsman started
batsmen = unique(r$batsman)
s = data.frame(matrix(nrow = 0, ncol = dim(k[2])))
for(bman1 in batsmen){
t1 <-r %>% filter(batsman == bman1)
t2=t1[1,]
s=rbind(s,t2)
}
s1 = select(s,ballNum,n1,batsman)
# Plot both lines
if(plot ==1){ #ggplot
df3 = as.data.frame(cbind(d$ballNum,m1))
names(df3) <- c("ballNum","winProbability")
df4 = as.data.frame(cbind(d1$ballNum,n1))
names(df4) <- c("ballNum","winProbability")
maxBallNum = max(df3$ballNum)
df4$ballNum = df4$ballNum - maxBallNum
g <- ggplot() +
geom_line(data = df3, aes(x = ballNum, y = winProbability, color = teamA)) +
geom_line(data = df4, aes(x = ballNum, y = winProbability, color = teamB))+
geom_point(data=k2, aes(x=ballNum, y=m1,color="blue"),shape=15) +
geom_text(data=k2, aes(x=ballNum,y=m1,label=wicketPlayerOut,color="blue"),nudge_x =0.5,nudge_y = 0.5)+
geom_point(data=p1, aes(x=ballNum, y=m1,colour="red"),shape=16) +
geom_text(data=p1, aes(x=ballNum,y=m1,label=batsman,colour="red"),nudge_x =0.5,nudge_y = 0.5) +
geom_point(data=r2, aes(x=ballNum, y=n1,colour="black"),shape=15) +
geom_text(data=r2, aes(x=ballNum,y=n1,label=wicketPlayerOut,colour="black"),nudge_x =0.5,nudge_y = 0.5) +
geom_point(data=s1, aes(x=ballNum, y=n1,colour="grey"),shape=16) +
geom_text(data=s1, aes(x=ballNum,y=n1,label=batsman,colour="grey"),nudge_x =0.5,nudge_y = 0.5)+
geom_vline(xintercept=36, linetype="dashed", color = "red") +
geom_vline(xintercept=96, linetype="dashed", color = "red") +
ggtitle("Ball-by-ball Deep Learning Win Probability (Overlapping)")
ggplotly(g)
}else { #ggplotly
g <- ggplot() +
geom_line(data = team11, aes(x = ballNum, y = winProbability, color = teamA)) +
geom_line(data = team22, aes(x = ballNum, y = winProbability, color = teamB))+
ggtitle("Ball-by-ball Deep Learning Win Probability (Side-by-side)")
ggplotly(g)
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.