#'@title Monte Carlo power evaluation for experimental designs with user-supplied libraries
#'
#'@description Evaluates the power of an experimental design, given its run matrix and the
#'statistical model to be fit to the data, using monte carlo simulation. Simulated data is fit using a
#'user-supplied fitting library and power is estimated by the fraction of times a parameter is significant. Returns
#'a data frame of parameter powers.
#'
#'@param design The experimental design. Internally, \code{eval_design_custom_mc} rescales each numeric column
#'to the range [-1, 1].
#'@param model The model used in evaluating the design. If this is missing and the design
#'was generated with skpr, the generating model will be used. It can be a subset of the model used to
#'generate the design, or include higher order effects not in the original design generation. It cannot include
#'factors that are not present in the experimental design.
#'@param alpha Default `0.05`. The type-I error. p-values less than this will be counted as significant.
#'@param nsim The number of simulations.
#'@param rfunction Random number generator function. Should be a function of the form f(X, b), where X is the
#'model matrix and b are the anticipated coefficients.
#'@param fitfunction Function used to fit the data. Should be of the form f(formula, X, contrasts)
#'where X is the model matrix. If contrasts do not need to be specified for the user supplied
#'library, that argument can be ignored.
#'@param pvalfunction Function that returns a vector of p-values from the object returned from the fitfunction.
#'@param coef_function Function that, when applied to a fitfunction return object, returns the estimated coefficients.
#'@param calceffect Default `FALSE`. Calculates effect power for a Type-III Anova (using the car package) using a Wald test.
#'this ratio can be a vector specifying the variance ratio for each subplot. Otherwise, it will use a single value for all strata. To work, the
#'fit returned by `fitfunction` must have a method compatable with the car package.
#'@param parameternames Vector of parameter names if the coefficients do not correspond simply to the columns in the model matrix
#'(e.g. coefficients from an MLE fit).
#'@param detailedoutput Default `FALSE`. If `TRUE`, return additional information about evaluation in results.
#'@param advancedoptions Default `NULL`. Named list of advanced options. `advancedoptions$anovatype` specifies the Anova type in the car package (default type `III`),
#'user can change to type `II`). `advancedoptions$anovatest` specifies the test statistic if the user does not want a `Wald` test--other options are likelyhood-ratio `LR` and F-test `F`.
#'`advancedoptions$progressBarUpdater` is a function called in non-parallel simulations that can be used to update external progress bar.`advancedoptions$GUI` turns off some warning messages when in the GUI.
#'If `advancedoptions$save_simulated_responses = TRUE`, the dataframe will have an attribute `simulated_responses` that contains the simulated responses from the power evaluation. `advancedoptions$ci_error_conf` will
#'set the confidence level for power intervals, which are printed when `detailedoutput = TRUE`.
#'@param anticoef The anticipated coefficients for calculating the power. If missing, coefficients will be
#'automatically generated based on \code{effectsize}.
#'@param effectsize The signal-to-noise ratio. Default 2. For a gaussian model, and for
#'continuous factors, this specifies the difference in response between the highest
#'and lowest levels of a factor (which are +1 and -1 after normalization).
#'More precisely: If you do not specify \code{anticoef}, the anticipated coefficients will be
#'half of \code{effectsize}. If you do specify \code{anticoef}, \code{effectsize} will be ignored.
#'@param contrasts Default \code{contr.sum}. Function used to generate the contrasts encoding for categorical variables. If the user has specified their own contrasts
#'for a categorical factor using the contrasts function, those will be used. Otherwise, skpr will use contr.sum.
#'@param parallel Default `FALSE`. If `TRUE`, the power simulation will use all but one of the available cores.
#' If the user wants to set the number of cores manually, they can do this by setting `options("cores")` to the desired number (e.g. `options("cores" = parallel::detectCores())`).
#' NOTE: If you have installed BLAS libraries that include multicore support (e.g. Intel MKL that comes with Microsoft R Open), turning on parallel could result in reduced performance.
#'@param progress Default `TRUE`. Whether to include a progress bar.
#'@param parallel_pkgs A vector of strings listing the external packages to be included in each parallel worker.
#'@param ... Additional arguments.
#'@return A data frame consisting of the parameters and their powers. The parameter estimates from the simulations are
#'stored in the 'estimates' attribute.
#'@import foreach doParallel stats doRNG
#'@export
#'@examples #To demonstrate how a user can use their own libraries for Monte Carlo power generation,
#'#We will recreate eval_design_survival_mc using the eval_design_custom_mc framework.
#'
#'#To begin, first let us generate the same design and random generation function shown in the
#'#eval_design_survival_mc examples:
#'
#'basicdesign = expand.grid(a = c(-1, 1), b = c("a","b","c"))
#'design = gen_design(candidateset = basicdesign, model = ~a + b + a:b, trials = 100,
#' optimality = "D", repeats = 100)
#'
#'#Random number generating function
#'
#'rsurvival = function(X, b) {
#' Y = rexp(n = nrow(X), rate = exp(-(X %*% b)))
#' censored = Y > 1
#' Y[censored] = 1
#' return(survival::Surv(time = Y, event = !censored, type = "right"))
#'}
#'
#'#We now need to tell the package how we want to fit our data,
#'#given the formula and the model matrix X (and, if needed, the list of contrasts).
#'#If the contrasts aren't required, "contrastslist" should be set to NULL.
#'#This should return some type of fit object.
#'
#'fitsurv = function(formula, X, contrastslist = NULL) {
#' return(survival::survreg(formula, data = X, dist = "exponential"))
#'}
#'
#'
#'#We now need to tell the package how to extract the p-values from the fit object returned
#'#from the fit function. This is how to extract the p-values from the survreg fit object:
#'
#'pvalsurv = function(fit) {
#' return(summary(fit)$table[, 4])
#'}
#'
#'#And now we evaluate the design, passing the fitting function and p-value extracting function
#'#in along with the standard inputs for eval_design_mc.
#'#This has the exact same behavior as eval_design_survival_mc for the exponential distribution.
#'eval_design_custom_mc(design = design, model = ~a + b + a:b,
#' alpha = 0.05, nsim = 100,
#' fitfunction = fitsurv, pvalfunction = pvalsurv,
#' rfunction = rsurvival, effectsize = 1)
#'#We can also use skpr's framework for parallel computation to automatically parallelize this
#'#to speed up computation
#'\dontrun{eval_design_custom_mc(design = design, model = ~a + b + a:b,
#' alpha = 0.05, nsim = 1000,
#' fitfunction = fitsurv, pvalfunction = pvalsurv,
#' rfunction = rsurvival, effectsize = 1,
#' parallel = TRUE, parallel_pkgs = "survival")
#'}
eval_design_custom_mc = function(
design,
model = NULL,
alpha = 0.05,
nsim,
rfunction,
fitfunction,
pvalfunction,
anticoef,
effectsize = 2,
contrasts = contr.sum,
coef_function = coef,
calceffect = FALSE,
detailedoutput = FALSE,
parameternames = NULL,
advancedoptions = NULL,
progress = TRUE,
parallel = FALSE,
parallel_pkgs = NULL,
...
) {
if (!is.null(advancedoptions)) {
if (is.null(advancedoptions$save_simulated_responses)) {
advancedoptions$save_simulated_responses = FALSE
}
if (is.null(advancedoptions$GUI)) {
advancedoptions$GUI = FALSE
}
if (!is.null(advancedoptions$progressBarUpdater)) {
progressBarUpdater = advancedoptions$progressBarUpdater
} else {
progressBarUpdater = NULL
}
if (is.null(advancedoptions$alphacorrection)) {
advancedoptions$alphacorrection = TRUE
} else {
if (!advancedoptions$alphacorrection) {
advancedoptions$alphacorrection = FALSE
}
}
} else {
advancedoptions = list()
advancedoptions$GUI = FALSE
advancedoptions$alphacorrection = TRUE
progressBarUpdater = NULL
advancedoptions$save_simulated_responses = FALSE
}
if (!is.null(getOption("skpr_progress"))) {
progress = getOption("skpr_progress")
}
if (is.null(advancedoptions$ci_error_conf)) {
advancedoptions$ci_error_conf = 0.95
}
if (!is.null(advancedoptions$anovatype)) {
anovatype = advancedoptions$anovatype
} else {
anovatype = "III"
}
if (missing(design)) {
stop("skpr: No design detected in arguments.")
}
if (missing(model) || (is.numeric(model) && missing(alpha))) {
if (is.numeric(model) && missing(alpha)) {
alpha = model
}
if (is.null(attr(design, "generating.model"))) {
stop("skpr: No model detected in arguments or in design attributes.")
} else {
model = attr(design, "generating.model")
}
}
args = list(...)
if ("RunMatrix" %in% names(args)) {
stop("skpr: RunMatrix argument deprecated. Use `design` instead.")
}
#detect pre-set contrasts
presetcontrasts = list()
for (x in names(design)[
lapply(design, class) %in% c("character", "factor")
]) {
if (!is.null(attr(design[[x]], "contrasts"))) {
presetcontrasts[[x]] = attr(design[[x]], "contrasts")
}
}
if (attr(terms.formula(model, data = design), "intercept") == 1) {
nointercept = FALSE
} else {
nointercept = TRUE
}
#covert tibbles
run_matrix_processed = as.data.frame(design)
#----- Convert dots in formula to terms -----#
model = convert_model_dots(run_matrix_processed, model)
#----- Rearrange formula terms by order -----#
model = rearrange_formula_by_order(model, data = run_matrix_processed)
#------Normalize/Center numeric columns ------#
run_matrix_processed = normalize_design(run_matrix_processed)
#Remove skpr-generated REML blocking indicators if present
run_matrix_processed = remove_skpr_blockcols(run_matrix_processed)
#---------- Generating model matrix ----------#
#remove columns from variables not used in the model
RunMatrixReduced = reduceRunMatrix(run_matrix_processed, model)
contrastslist = list()
for (x in names(RunMatrixReduced[
lapply(RunMatrixReduced, class) %in% c("character", "factor")
])) {
if (!(x %in% names(presetcontrasts))) {
contrastslist[[x]] = contrasts
stats::contrasts(RunMatrixReduced[[x]]) = contrasts
} else {
contrastslist[[x]] = presetcontrasts[[x]]
}
}
if (length(contrastslist) < 1) {
contrastslist = NULL
}
ModelMatrix = model.matrix(
model,
RunMatrixReduced,
contrasts.arg = contrastslist
)
#We'll need the parameter and effect names for output
#saving model for return attribute
generatingmodel = model
if (is.null(parameternames)) {
parameter_names = colnames(ModelMatrix)
} else {
parameter_names = parameternames
}
# autogenerate anticipated coefficients
if (!missing(effectsize) && !missing(anticoef)) {
warning(
"User defined anticipated coefficnets (anticoef) detected; ignoring effectsize argument."
)
}
if (missing(anticoef)) {
anticoef = gen_anticoef(RunMatrixReduced, model, nointercept) *
effectsize /
2
if (!("(Intercept)" %in% colnames(ModelMatrix))) {
anticoef = anticoef[-1]
}
}
if (length(anticoef) != dim(ModelMatrix)[2]) {
stop("skpr: Wrong number of anticipated coefficients")
}
num_updates = min(c(nsim, 500))
progressbarupdates = floor(seq(1, nsim, length.out = num_updates))
progresscurrent = 1
model_formula = update.formula(model, Y ~ .)
nparam = ncol(ModelMatrix)
RunMatrixReduced$Y = 1
issued_non_convergence_warning = FALSE
if (!parallel) {
power_values = rep(0, length(parameter_names))
effect_pvals_list = list()
effect_power_values = list()
estimates = list()
if (interactive() && progress) {
pb = progress::progress_bar$new(
format = sprintf(
" Evaluating [:bar] (:current/:total, :tick_rate sim/s) ETA: :eta"
),
total = nsim,
clear = TRUE,
width = 100
)
}
for (j in seq_len(nsim)) {
#simulate the data.
RunMatrixReduced$Y = rfunction(ModelMatrix, anticoef)
#fit a model to the simulated data.
fit = fitfunction(model_formula, RunMatrixReduced, contrastslist)
#determine whether beta[i] is significant. If so, increment nsignificant
pvals = pvalfunction(fit)
if (any(is.na(pvals))) {
pvals[is.na(pvals)] = 1
if (!issued_non_convergence_warning) {
warning(
"skpr: NaN or NA values found in calculating p values, it is likely the design does not support the model. ",
"Reduce the model or increase the number of runs to resolve."
)
issued_non_convergence_warning = TRUE
}
}
power_values[pvals < alpha] = power_values[pvals < alpha] + 1
if (calceffect) {
effect_pvals = effectpowermc(fit, type = anovatype, test = "Pr(>Chisq)")
effect_pvals_list[[j]] = effect_pvals
}
estimates[[j]] = coef_function(fit)
if (interactive() && progress && !advancedoptions$GUI) {
pb$tick()
}
}
if (calceffect) {
effect_results = do.call(rbind, effect_pvals_list)
effect_power_names = colnames(effect_results)
effect_power_matrix = matrix(
0,
nrow(effect_results),
ncol(effect_results)
)
effect_power_matrix[effect_results < alpha] = 1
effect_power_results = apply(effect_power_matrix, 2, sum) / nsim
}
power_values = power_values / nsim
} else {
if (!getOption("skpr_progress", TRUE)) {
progressbarupdates = c()
}
if (!advancedoptions$GUI && progress) {
set_up_progressr_handler("Evaluating", "sims")
}
run_search = function(iterations) {
prog = progressr::progressor(steps = nsim)
foreach::foreach(
i = iterations,
.errorhandling = "remove",
.options.future = list(
packages = parallel_pkgs,
globals = c(
"extractPvalues",
"pvalfunction",
"parameter_names",
"progress",
"progressbarupdates",
"model_formula",
"rfunction",
"RunMatrixReduced",
"model.matrix",
"anticoef",
"prog",
"fitfunction",
"contrastslist",
"effectpowermc",
"anovatype",
"calceffect",
"alpha",
"coef_function",
"nsim",
"num_updates"
),
seed = TRUE
)
) %dofuture%
{
if (i %in% progressbarupdates) {
prog(amount = nsim / num_updates)
}
power_values = rep(0, ncol(ModelMatrix))
#simulate the data.
RunMatrixReduced$Y = rfunction(ModelMatrix, anticoef)
#fit a model to the simulated data.
fit = fitfunction(model_formula, RunMatrixReduced, contrastslist)
#determine whether beta[i] is significant. If so, increment nsignificant
pvals = pvalfunction(fit)
if (any(is.na(pvals))) {
pvals[is.na(pvals)] = 1
if (!issued_non_convergence_warning) {
warning(
"skpr: NaN or NA values found in calculating p values, it is likely the design does not support the model. ",
"Reduce the model or increase the number of runs to resolve."
)
issued_non_convergence_warning = TRUE
}
}
pvals = pvals[order(factor(names(pvals), levels = parameter_names))]
pvals[is.na(pvals)] = 1
stopifnot(all(names(pvals) == parameter_names))
if (calceffect) {
effect_pvals = effectpowermc(
fit,
type = anovatype,
test = "Pr(>Chisq)"
)
effect_pvals[is.na(effect_pvals)] = 1
}
power_values[pvals < alpha] = 1
estimates = coef_function(fit)
if (!calceffect) {
list(
"parameter_power" = power_values,
"estimates" = estimates,
"pvals" = pvals
)
} else {
list(
"parameter_power" = power_values,
"effect_power" = effect_pvals,
"estimates" = estimates,
"pvals" = pvals
)
}
}
}
power_estimates = run_search(seq_len(nsim))
power_values = apply(
do.call("rbind", lapply(power_estimates, \(x) x$parameter_power)),
2,
sum
) /
nsim
pvals = do.call("rbind", lapply(power_estimates, \(x) x$pvals))
estimates = do.call("rbind", lapply(power_estimates, \(x) x$estimates))
if (calceffect) {
effect_power_results = apply(
do.call("rbind", lapply(power_estimates, \(x) x$effect_power)),
2,
sum
) /
nsim
effect_power_names = colnames(effect_power_values)
}
}
#output the results (tidy data format)
power_final = data.frame(
parameter = parameter_names,
type = "custom.parameter.power.mc",
power = power_values
)
if (calceffect) {
effect_power_final = data.frame(
parameter = effect_power_names,
type = "custom.effect.power.mc",
power = effect_power_results
)
power_final = rbind(effect_power_final, power_final)
}
attr(power_final, "generating.model") = generatingmodel
attr(power_final, "estimatesnames") = parameter_names
attr(power_final, "estimates") = estimates
attr(power_final, "alpha") = alpha
attr(power_final, "runmatrix") = RunMatrixReduced
attr(power_final, "anticoef") = anticoef
if (detailedoutput) {
if (nrow(power_final) != length(anticoef)) {
power_final$anticoef = c(
rep(NA, nrow(power_final) - length(anticoef)),
anticoef
)
} else {
power_final$anticoef = anticoef
}
power_final$alpha = alpha
power_final$trials = nrow(run_matrix_processed)
power_final$nsim = nsim
power_final = add_ci_bounds_mc_power(
power_final,
nsim = nsim,
conf = advancedoptions$ci_error_conf
)
attr(power_final, "mc.conf.int") = advancedoptions$ci_error_conf
}
if (!inherits(power_final, "skpr_eval_output")) {
class(power_final) = c("skpr_eval_output", class(power_final))
}
return(power_final)
}
globalVariables("i")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.