ccSpectral.multiareas: Core function to calculate all spectral indices from multiple...

Usage Arguments Examples

View source: R/ccSpectral.multiareas.R

Usage

1
ccSpectral.multiareas(tif.path, chart, obs.areas, rasters = F, ml = F, ml.cutoff = 0.9, pdf = F, thresholds = c(0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3))

Arguments

tif.path
chart
obs.areas
rasters
ml
ml.cutoff
pdf
thresholds

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
##---- Should be DIRECTLY executable !! ----
##-- ==>  Define data, use random,
##--	or do  help(data=index)  for the standard data sets.

## The function is currently defined as
function (tif.path, chart, obs.areas, rasters = F, ml = F, ml.cutoff = 0.9, 
    pdf = F, thresholds = c(0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3)) 
{
    if (any(list.files(getwd()) %in% "nir") & any(list.files(getwd()) %in% 
        "vis")) {
    }
    else {
        wd <- getwd()
        setwd(tif.path)
        on.exit(setwd(wd))
    }
    vis.files <- list.files(path = "./vis")
    nir.files <- list.files(path = "./nir")
    if (length(vis.files) != length(nir.files)) {
        stop("Different number of VIS and NIR photos")
    }
    out.dir <- paste("output", Sys.time())
    dir.create(out.dir)
    df <- data.frame(unit = character(), vis.file = character(), 
        nir.file = character(), red.rsq = numeric(), green.rsq = numeric(), 
        blue.rsq = numeric(), nir.rsq = numeric(), ndvi.median = numeric(), 
        ndvi.mean = numeric(), ndvi.threshold = numeric(), ndvi.cover = numeric(), 
        vi.median = numeric(), vi.mean = numeric(), vi.threshold = numeric(), 
        vi.cover = numeric(), msavi.median = numeric(), msavi.mean = numeric(), 
        msavi.threshold = numeric(), msavi.cover = numeric(), 
        evi.median = numeric(), evi.mean = numeric(), evi.threshold = numeric(), 
        evi.cover = numeric(), bsci.median = numeric(), ci.mean = numeric(), 
        ci.threshold = numeric(), ci.cover = numeric(), bsci.median = numeric(), 
        bsci.mean = numeric(), bsci.threshold = numeric(), bsci.cover = numeric(), 
        bi.median = numeric(), bi.mean = numeric(), bi.threshold = numeric(), 
        bi.cover = numeric())
    summary.file <- paste0(out.dir, "/summary_data.csv")
    if (!file.exists(summary.file)) {
        write.csv(df, summary.file, row.names = F)
    }
    total.samples <- length(vis.files) * length(obs.areas)
    message(paste0(length(vis.files), " pictures with ", length(obs.areas), 
        " areas each = ", total.samples, " total samples"))
    all.named <- expand.grid(vis.files, names(obs.areas))
    names(all.named) <- c("photo", "pocillo")
    all.named <- arrange(all.named, photo)
    if (file.exists("names.csv")) {
        sample.names <- c(as.character(read.csv("names.csv")[, 
            1]))
        if (length(sample.names) != total.samples) {
            stop("File of sample names contains less/more names than samples")
        }
        all.named$moss <- sample.names
    }
    else {
        all.named$moss <- c(names = paste0("obs_", 1:(total.samples)))
    }
    print(all.named)
    calcs <- function(next.photo, next.area) {
        obs.area <- obs.areas[[next.area]]
        vis.photo <- vis.files[next.photo]
        nir.photo <- nir.files[next.photo]
        library(data.table)
        done.samples <- nrow(fread(summary.file, select = 1L, 
            header = T))
        if (file.exists("names.csv")) {
            sample.names <- c(as.character(read.csv("names.csv")[, 
                1]))
            if (length(sample.names) != total.samples) {
                stop("File of sample names contains less/more names than samples")
            }
        }
        else {
            sample.names <- c(names = paste0("obs_", 1:(total.samples)))
        }
        if (done.samples > 0) {
            sample.name <- sample.names[done.samples + 1]
        }
        else {
            sample.name <- sample.names[1]
        }
        print(vis.photo)
        print(nir.photo)
        print(paste0(names(obs.areas)[next.area], ": ", sample.name))
        vis.tiff <- readTIFF(paste("./vis/", vis.photo, sep = ""))
        vis.red <- raster(vis.tiff[, , 1])
        vis.green <- raster(vis.tiff[, , 2])
        vis.blue <- raster(vis.tiff[, , 3])
        nir.tiff <- readTIFF(paste("./nir/", nir.photo, sep = ""))
        nir.blue <- raster(nir.tiff[, , 3]) + 10/256
        asp <- nrow(vis.red)/ncol(vis.red)
        all.bands <- stack(vis.red, vis.green, vis.blue, nir.blue)
        names(all.bands) <- c("vis.red", "vis.green", "vis.blue", 
            "nir.blue")
        obs.ext <- extent(min(obs.area$x), max(obs.area$x), min(obs.area$y), 
            max(obs.area$y))
        temp.mat <- raster(matrix(data = NA, nrow = nrow(all.bands), 
            ncol = ncol(all.bands), byrow = T))
        bands.df <- data.frame(extract(all.bands, obs.area$cells))
        colnames(bands.df) <- c("vis.red", "vis.green", "vis.blue", 
            "nir.blue")
        train.df <- data.frame()
        chart.vals <- data.frame(red.chart = c(0.17, 0.63, 0.15, 
            0.11, 0.31, 0.2, 0.63, 0.12, 0.57, 0.21, 0.33, 0.67, 
            0.04, 0.1, 0.6, 0.79, 0.7, 0.07, 0.93, 0.59, 0.36, 
            0.18, 0.08, 0.03), green.chart = c(0.1, 0.32, 0.19, 
            0.14, 0.22, 0.47, 0.27, 0.11, 0.13, 0.06, 0.48, 0.4, 
            0.06, 0.27, 0.07, 0.62, 0.13, 0.22, 0.95, 0.62, 0.38, 
            0.2, 0.09, 0.03), blue.chart = c(0.07, 0.24, 0.34, 
            0.06, 0.42, 0.42, 0.06, 0.36, 0.12, 0.14, 0.1, 0.06, 
            0.24, 0.09, 0.04, 0.08, 0.31, 0.38, 0.93, 0.62, 0.39, 
            0.2, 0.09, 0.02), nir.chart = c(0.43, 0.87, 0.86, 
            0.18, 0.86, 0.43, 0.85, 0.54, 0.54, 0.79, 0.49, 0.66, 
            0.52, 0.44, 0.72, 0.82, 0.88, 0.42, 0.91, 0.51, 0.27, 
            0.13, 0.06, 0.02))
        for (i in c(1:24)[-3]) {
            poly <- chart[i]
            options(warn = -1)
            df.samp <- data.frame(chart.vals[i, ], extract(all.bands, 
                poly))
            options(warn = 0)
            if (nrow(df.samp) >= 50) {
                df.samp <- df.samp[sample(x = 1:nrow(df.samp), 
                  size = 50, replace = F), ]
            }
            train.df <- rbind(train.df, df.samp)
        }
        red.nls <- nls(red.chart ~ (a * exp(b * vis.red)), trace = F, 
            data = train.df, start = c(a = 0.1, b = 0.1))
        red.preds <- predict(red.nls, bands.df)
        red.rsq <- 1 - sum((train.df$red.chart - predict(red.nls, 
            train.df))^2)/(length(train.df$red.chart) * var(train.df$red.chart))
        red.mat <- temp.mat
        values(red.mat)[obs.area$cells] <- red.preds
        red.mat <- crop(red.mat, extent(obs.ext))
        green.nls <- nls(green.chart ~ (a * exp(b * vis.green)), 
            trace = F, data = train.df, start = c(a = 0.1, b = 0.1))
        green.preds <- predict(green.nls, bands.df)
        green.rsq <- 1 - sum((train.df$green.chart - predict(green.nls, 
            train.df))^2)/(length(train.df$green.chart) * var(train.df$green.chart))
        green.mat <- temp.mat
        values(green.mat)[obs.area$cells] <- green.preds
        green.mat <- crop(green.mat, extent(obs.ext))
        blue.nls <- nls(blue.chart ~ (a * exp(b * vis.blue)), 
            trace = F, data = train.df, start = c(a = 0.1, b = 0.1))
        blue.preds <- predict(blue.nls, bands.df)
        blue.rsq <- 1 - sum((train.df$blue.chart - predict(blue.nls, 
            train.df))^2)/(length(train.df$blue.chart) * var(train.df$blue.chart))
        blue.mat <- temp.mat
        values(blue.mat)[obs.area$cells] <- blue.preds
        blue.mat <- crop(blue.mat, extent(obs.ext))
        nir.nls <- nls(nir.chart ~ (a * exp(b * nir.blue)), trace = F, 
            data = train.df, start = c(a = 0.1, b = 0.1))
        nir.preds <- predict(nir.nls, bands.df)
        nir.rsq <- 1 - sum((train.df$nir.chart - predict(nir.nls, 
            train.df))^2)/(length(train.df$nir.chart) * var(train.df$nir.chart))
        nir.mat <- temp.mat
        values(nir.mat)[obs.area$cells] <- nir.preds
        nir.mat <- crop(nir.mat, extent(obs.ext))
        ndvi <- (nir.mat - red.mat)/(nir.mat + red.mat)
        sr <- nir.mat/red.mat
        msavi <- (2 * nir.mat + 1 - sqrt((2 * nir.mat + 1)^2 - 
            8 * (nir.mat - red.mat)))/2
        evi <- 2.5 * ((nir.mat - red.mat)/(nir.mat + 6 * red.mat - 
            7.5 * blue.mat + 1))
        ci <- 1 - (red.mat - blue.mat)/(red.mat + blue.mat)
        bsci <- (1 - 2 * abs(red.mat - green.mat))/raster::mean(stack(green.mat, 
            red.mat, nir.mat))
        bi <- sqrt(green.mat^2 + red.mat^2 + nir.mat^2)
        ndvi.cut <- ndvi >= thresholds[1]
        sr.cut <- sr >= thresholds[2]
        msavi.cut <- msavi >= thresholds[3]
        evi.cut <- evi >= thresholds[4]
        ci.cut <- ci >= thresholds[5]
        bsci.cut <- bsci >= thresholds[6]
        bi.cut <- bi <= thresholds[7]
        pal <- colorRampPalette(colors = rev(brewer.pal(11, "Spectral")))(100)
        if (pdf == T) {
            pdf(file = paste(out.dir, "/", sample.name, ".pdf", 
                sep = ""), w = 10, h = 25)
            par(mfrow = c(7, 3))
            hist(ndvi, breaks = 1000, main = "NDVI Distribution")
            plot(ndvi, col = pal, main = "NDVI Values", axes = FALSE, 
                box = FALSE, asp = asp)
            plot(ndvi.cut, col = c("black", "green"), legend = F, 
                main = paste("NDVI Binary Cover threshold", thresholds[1]), 
                axes = FALSE, box = FALSE, asp = asp)
            hist(sr, breaks = 1000, main = "SR Distribution")
            plot(sr, col = pal, main = "SR Values", axes = FALSE, 
                box = FALSE, asp = asp)
            plot(sr.cut, col = c("black", "green"), legend = F, 
                main = paste("SR Binary Cover threshold", thresholds[2]), 
                axes = FALSE, box = FALSE, asp = asp)
            hist(msavi, breaks = 1000, main = "MSAVI Distribution")
            plot(msavi, col = pal, main = "MSAVI Values", axes = FALSE, 
                box = FALSE, asp = asp)
            plot(msavi.cut, col = c("black", "green"), legend = F, 
                main = paste("MSAVI Binary Cover threshold", 
                  thresholds[3]), axes = FALSE, box = FALSE, 
                asp = asp)
            hist(evi, breaks = 1000, main = "EVI Distribution")
            plot(evi, col = pal, main = "EVI Values", axes = FALSE, 
                box = FALSE, asp = asp)
            plot(evi.cut, col = c("black", "green"), legend = F, 
                main = paste("EVI Binary Cover threshold", thresholds[4]), 
                axes = FALSE, box = FALSE, asp = asp)
            hist(ci, breaks = 1000, main = "Crust Index Distribution")
            plot(ci, col = pal, main = "Crust Index Values", 
                axes = FALSE, box = FALSE, asp = asp)
            plot(ci.cut, col = c("black", "green"), legend = F, 
                main = paste("Crust Index Binary Cover threshold", 
                  thresholds[5]), axes = FALSE, box = FALSE, 
                asp = asp)
            hist(bsci, breaks = 1000, main = "BSCI Index Distribution")
            plot(bsci, col = pal, main = "BSC Index Values", 
                axes = FALSE, box = FALSE, asp = asp)
            plot(bsci.cut, col = c("black", "green"), legend = F, 
                main = paste("BSC Index Binary Cover threshold", 
                  thresholds[6]), axes = FALSE, box = FALSE, 
                asp = asp)
            hist(bi, breaks = 1000, main = "Brightness Index Distribution")
            plot(bi, col = pal, main = "Brightness Index Values", 
                axes = FALSE, box = FALSE, asp = asp)
            plot(bi.cut, col = c("black", "green"), legend = F, 
                main = paste("Brightness Index Binary Cover threshold", 
                  thresholds[7]), axes = FALSE, box = FALSE, 
                asp = asp)
            dev.off()
        }
        dat <- read.csv(summary.file)
        ndvi.mean <- cellStats(ndvi, stat = "mean")
        ndvi.median <- median(na.omit(values(ndvi)))
        ndvi.cover <- nrow(rasterToPoints(reclassify(ndvi.cut, 
            rcl = cbind(0, NA))))/nrow(obs.area)
        sr.mean <- cellStats(sr, stat = "mean")
        sr.median <- median(na.omit(values(sr)))
        sr.cover <- nrow(rasterToPoints(reclassify(sr.cut, rcl = cbind(0, 
            NA))))/nrow(obs.area)
        msavi.mean <- cellStats(msavi, stat = "mean")
        msavi.median <- median(na.omit(values(msavi)))
        msavi.cover <- nrow(rasterToPoints(reclassify(msavi.cut, 
            rcl = cbind(0, NA))))/nrow(obs.area)
        evi.mean <- cellStats(evi, stat = "mean")
        evi.median <- median(na.omit(values(evi)))
        evi.cover <- nrow(rasterToPoints(reclassify(evi.cut, 
            rcl = cbind(0, NA))))/nrow(obs.area)
        ci.mean <- cellStats(ci, stat = "mean")
        ci.median <- median(na.omit(values(ci)))
        ci.cover <- nrow(rasterToPoints(reclassify(ci.cut, rcl = cbind(0, 
            NA))))/nrow(obs.area)
        bsci.mean <- cellStats(bsci, stat = "mean")
        bsci.median <- median(na.omit(values(bsci)))
        bsci.cover <- nrow(rasterToPoints(reclassify(bsci.cut, 
            rcl = cbind(0, NA))))/nrow(obs.area)
        bi.mean <- cellStats(bi, stat = "mean")
        bi.median <- median(na.omit(values(bi)))
        bi.cover <- nrow(rasterToPoints(reclassify(bi.cut, rcl = cbind(0, 
            NA))))/nrow(obs.area)
        new.dat <- data.frame(sample.name, vis.photo, nir.photo, 
            red.rsq, green.rsq, blue.rsq, nir.rsq, ndvi.median, 
            ndvi.mean, thresholds[1], ndvi.cover, sr.median, 
            sr.mean, thresholds[2], sr.cover, msavi.mean, msavi.median, 
            thresholds[3], msavi.cover, evi.mean, evi.median, 
            thresholds[4], evi.cover, ci.mean, ci.median, thresholds[5], 
            ci.cover, bsci.mean, bsci.median, thresholds[6], 
            bsci.cover, bi.mean, bi.median, thresholds[7], bi.cover)
        colnames(new.dat) <- colnames(dat)
        dat.bind <- rbind(dat, new.dat)
        write.csv(dat.bind, summary.file, row.names = F)
        message(paste0(sample.name, " processed... (", 100 * 
            round((done.samples + 1)/total.samples, 2), " %)"))
    }
    all <- expand.grid(1:length(vis.files), 1:length(obs.areas))
    all <- arrange(all, Var1)
    print(all)
    message("Starting calculations...")
    apply(all, 1, function(pair) {
        calcs(pair[1], pair[2])
    })
    message("Processed files may be found at: ", paste0(tif.path, 
        out.dir))
  }

united-ecology/photomoss documentation built on July 10, 2020, 10:21 p.m.