########################
#
# Date of creation: Dec 18 2019
# Author: Gina
# Purpose: Process 2018 and 2019 biomass
# NOTES: COmbine it with Will's in a another dataset
#
# In 2019, it was always 8 plants
# # I was inconsistent where I lumped the ear husks, so they are included in stem/tass
# # ear is first measured on 8/1, w/no husk values
# # ear is reported on 8/19, again w/no husk values
# # on 9/20 there is ear, but also husk, cob, kernals.
# # for this date, the ear value is the sum of cob and kernals (500 were taken out later)
# In 2018, num of plants differed
# # once I started partitioning the ears, the ears value is blank
#
# Last updated: Feb 18 2020: added date
# Jan 15 20201, trying to fix ears thing, separating grain500 to another dataset
#
#########################
rm(list=ls())
library(tidyverse)
library(lubridate)
library(readxl) #--used to read Excel files
library(janitor) #--used to clean data
pk <- read_csv("data-raw/plotkey/plotkey.csv")
# 2018 data ---------------------------------------------------------------
# this is a fucking mess.
bm18raw <- read_excel("data-raw/cornbio_gn/rd_mars-destructive_sampling.xlsx",
skip = 5,
na = "NA") %>%
mutate(date = as_date(date),
year = year(date),
doy = yday(date),
harv_crop = trt,
block = paste0("b", rep)) %>%
left_join(pk)
bm18a <-
bm18raw %>%
select(year, date, doy, plot_id, ds_nopl,
ds_gleafwtsubsam_g, ds_gleafwtother_g, ds_deadleafwt_g,
ds_stemtass_g, ds_ears_g, ds_husks_g,
ds_cobs_g, ds_kernals_g, ds_krnl500_g) %>%
# I was inconsistent where I lumped the ear husks, so they are included in stem/tass
# call it 'ear', sum of cob and kernals
# do leaf, stemtasshusk, ear, plant
mutate(leaf = ds_gleafwtsubsam_g + ds_gleafwtother_g + ds_deadleafwt_g,
stemtasshusk = ds_stemtass_g + ds_husks_g ,
ear = ds_ears_g + ds_kernals_g + ds_cobs_g, #-this works for 2018, I either did ear or kernal+cob
plant = leaf + stemtasshusk + ear,
nu_pl = ds_nopl) %>%
select(-contains("ds")) %>%
gather(leaf:plant, key = organ, value = mass_g) %>%
mutate(mass_gpl = mass_g/nu_pl) %>%
select(year, date, doy, plot_id, organ, mass_g, mass_gpl)
#--add planting date, 5/8, 0 biomass point
plots18 <-
bm18 %>%
pull(plot_id) %>%
unique()
organs18 <- bm18 %>% pull(organ) %>% unique()
bm18pl <-
tibble(year = rep(2018, length(plots18)*length(organs18)),
date = as_date("2018-04-23"),
doy = yday(date),
plot_id = rep(plots18, each = length(organs18)),
organ = rep(organs18, times = 8),
mass_g = 0,
mass_gpl = 0)
bm18b <-
bm18pl %>%
bind_rows(bm18a)
bm18b %>%
ggplot(aes(doy, mass_gpl, color = organ)) +
geom_point()
# 2019 biomass ----------------------------------------------------
my19dir <- "data-raw/cornbio_gn/2019-data/"
#--biomass
bm19raw <-
tibble(files = list.files(my19dir)) %>%
mutate(path = paste0(my19dir, files)) %>%
filter(grepl('biomass', files)) %>%
filter(grepl(".xlsx", files)) %>%
mutate(data = path %>% map(read_excel, skip = 5)) %>%
select(data) %>%
unnest(cols = c(data)) %>%
fill(date, plot)
bm19a <-
bm19raw %>%
# subtract weight of bag
mutate(wgtbag_g = ifelse(is.na(wgtbag_g), 0, wgtbag_g),
wgt_g = wgtall_g - wgtbag_g) %>%
select(-wgtall_g, -wgtbag_g) %>%
mutate(wgt_g = ifelse(is.na(wgt_g), 0, wgt_g)) %>%
# fix date and plot things
mutate(date = as_date(date),
year = year(date),
doy = yday(date)) %>%
left_join(pk) %>%
select(year, date, doy, plot_id, organ, wgt_g) %>%
arrange(year, date, doy, plot_id) %>%
pivot_wider(names_from = organ, values_from = wgt_g)
bm19b <-
bm19a %>%
mutate_if(is.numeric, replace_na, 0) %>%
# do leaf, stemtasshusk, ear, plant
mutate(stemtasshusk = stemtass + ear_husk,
ear = ear,
leaf = brnleaf + LAIgleaf + othergleaf,
plant = stemtasshusk + ear + leaf) %>%
select(year, date, doy,
plot_id,
plant, leaf, stemtasshusk, ear) %>%
pivot_longer(plant:ear) %>%
rename("organ" = name,
"mass_g" = value) %>%
mutate(mass_gpl = mass_g/8) #--always 8 plants in 2019
#--add planting date, 6/3, 0 biomass point
plots19 <-
bm19b %>%
pull(plot_id) %>%
unique()
organs19 <- bm19b %>% pull(organ) %>% unique()
bm19pl <-
tibble(year = rep(2019, length(plots19)*length(organs19)),
date = as_date("2019-06-03"),
doy = yday(date),
plot_id = rep(plots19, each = length(organs19)),
organ = rep(organs19, times = 8),
mass_g = 0,
mass_gpl = 0)
bm19c <-
bm19pl %>%
bind_rows(bm19b)
bm19c %>%
ggplot(aes(doy, mass_gpl, color = organ)) +
geom_point()
# 2020 --------------------------------------------------------------------
my20dir <- "data-raw/cornbio_gn/2020-data/"
#--biomass
bm20raw <-
tibble(files = list.files(my20dir)) %>%
mutate(path = paste0(my20dir, files)) %>%
filter(grepl('biomass', files)) %>%
filter(grepl(".xlsx", files)) %>%
mutate(data = path %>% map(read_excel, skip = 5)) %>%
select(data) %>%
unnest(cols = c(data)) %>%
fill(date, plot)
bm20a <-
bm20raw %>%
# fix date
mutate(date = as_date(date),
year = year(date),
doy = yday(date)) %>%
left_join(pk) %>%
rename("wgt_g" = weight_g) %>%
select(year, date, doy, plot_id, organ, wgt_g) %>%
arrange(year, date, doy, plot_id) %>%
pivot_wider(names_from = organ, values_from = wgt_g)
bm20b <-
bm20a %>%
mutate_if(is.numeric, replace_na, 0) %>%
# do leaf, stemtasshusk, ear, plant
mutate(stemtasshusk = stem + reprod + stemtass,
ear = ear,
leaf = greenleaf + brnleaf,
plant = stemtasshusk + ear + leaf) %>%
select(year, date, doy,
plot_id,
plant, leaf, stemtasshusk, ear) %>%
pivot_longer(plant:ear) %>%
rename("organ" = name,
"mass_g" = value) %>%
mutate(mass_gpl = mass_g/8) #--always 8 plants in 2020?
#--add planting date, 4/23, 0 biomass point
plots20 <-
bm20b %>%
pull(plot_id) %>%
unique()
organs20 <- bm20b %>% pull(organ) %>% unique()
bm20pl <-
tibble(year = rep(2020, length(plots20)*length(organs20)),
date = as_date("2020-04-23"),
doy = yday(date),
plot_id = rep(plots20, each = length(organs20)),
organ = rep(organs20, times = 8),
mass_g = 0,
mass_gpl = 0)
bm20c <-
bm20pl %>%
bind_rows(bm20b)
bm20c %>%
ggplot(aes(doy, mass_gpl, color = organ)) +
geom_point()
# combine my datasets -------------------------------------------
mrs_cornbio_gn <-
bind_rows(bm18b, bm19c, bm20c) %>%
arrange(year, date, doy, plot_id, organ) %>%
mutate_if(is.numeric, replace_na, 0)
mrs_cornbio_gn %>%
ggplot(aes(doy, mass_gpl)) +
geom_point(aes(color = organ)) +
facet_grid(.~year)
mrs_cornbio_gn %>% write_csv("data-raw/cornbio_gn/cornbio_gn.csv")
usethis::use_data(mrs_cornbio_gn, overwrite = T)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.