#########################
# created: july 21 2021
#
# last updated:
#
# purpose: Process root dist data from 2019 and 2020 ML exp
#
# NOTES: Shit I need to tak into account the soil volume...
#
#########################
##### Clear environment and load packages #####
rm(list = ls())
library(tidyverse)
library(lubridate)
library(readxl) #--used to read Excel files
library(janitor) #--used to clean data
pk <- read_csv("data-raw/plotkey/plotkey.csv") %>%
filter(year %in% c(2019, 2020))
# 2019 --------------------------------------------------------------------
rd19raw <- read_excel("data-raw/rootdist_ml/2019 Marsden Farm Root Biomass Data single sheet.xlsx") %>%
clean_names()
dap19 <- read_excel("data-raw/rootdist_ml/DAP-to-date.xlsx") %>%
rename(days_after_planting = DAP) %>%
mutate(date = ymd(date))
rd19 <-
rd19raw %>%
left_join(dap19) %>%
mutate(year = year(date)) %>%
#--he specifies the side of the plot, doesn't matter for my purposes
mutate(plot = parse_number(plot)) %>%
left_join(pk) %>%
select(year, date, days_after_planting, depth, plot_id, root_weights_g, soil_volume_cm_3, mass_volume_g_cm_3) %>%
rename("roots_gcm3" = mass_volume_g_cm_3,
"roots_g" = root_weights_g,
"soilvol_cm3" = soil_volume_cm_3)
rd19
# 2020 --------------------------------------------------------------------
d4 <-
read_excel("data-raw/rootdist_ml/2020-data-from-matt/Marsden 2020 Root Biomass Data_12Feb2021.xlsx",
skip = 7, sheet = "D4") %>%
clean_names() %>%
remove_empty() %>%
slice(1:32) %>%
mutate(plot = parse_number(plot),
date = ymd("2020/04/27"),
year = year(date),
days_after_planting = 4) %>%
fill(plot, rotation) %>%
mutate(plot_id = paste(year, plot, sep = "_")) %>%
mutate(
roots_g = as.numeric(root_weights_g),
soilvol_cm3 = as.numeric(soil_area_cm_3),
roots_gcm3 = as.numeric(mass_area_g_cm_3)) %>%
select(date, plot_id, depth, days_after_planting, roots_g, soilvol_cm3, roots_gcm3)
d27 <-
read_excel("data-raw/rootdist_ml/2020-data-from-matt/Marsden 2020 Root Biomass Data_12Feb2021.xlsx",
skip = 3, sheet = "D27") %>%
clean_names() %>%
remove_empty() %>%
slice(1:32) %>%
mutate(plot = parse_number(plot),
date = ymd("2020/05/22"),
year = year(date),
days_after_planting = 27) %>%
fill(plot, rotation) %>%
mutate(plot_id = paste(year, plot, sep = "_")) %>%
mutate(
roots_g = as.numeric(root_weights_g),
soilvol_cm3 = as.numeric(soil_area_cm_3),
roots_gcm3 = as.numeric(mass_area_g_cm_3)) %>%
select(date, plot_id, depth, days_after_planting, roots_g, soilvol_cm3, roots_gcm3)
d50 <-
read_excel("data-raw/rootdist_ml/2020-data-from-matt/Marsden 2020 Root Biomass Data_12Feb2021.xlsx",
skip = 3, sheet = "D50") %>%
clean_names() %>%
remove_empty() %>%
slice(1:32) %>%
mutate(plot = parse_number(plot),
date = ymd("2020/06/12"),
year = year(date),
days_after_planting = 50) %>%
fill(plot, rotation) %>%
mutate(plot_id = paste(year, plot, sep = "_")) %>%
mutate(
roots_g = as.numeric(root_weight_g),
soilvol_cm3 = as.numeric(soil_area_cm_3),
roots_gcm3 = as.numeric(mass_area_g_cm_3)) %>%
select(date, plot_id, depth, days_after_planting, roots_g, soilvol_cm3, roots_gcm3)
d68 <-
read_excel("data-raw/rootdist_ml/2020-data-from-matt/Marsden 2020 Root Biomass Data_12Feb2021.xlsx",
skip = 3, sheet = "D68") %>%
clean_names() %>%
remove_empty() %>%
slice(1:32) %>%
mutate(plot = parse_number(plot),
date = ymd("2020/06/30"),
year = year(date),
days_after_planting = 68) %>%
fill(plot, rotation) %>%
mutate(plot_id = paste(year, plot, sep = "_")) %>%
mutate(
roots_g = as.numeric(root_weight_g),
soilvol_cm3 = as.numeric(soil_area_cm_3),
roots_gcm3 = as.numeric(mass_area_g_cm_3)) %>%
select(date, plot_id, depth, days_after_planting, roots_g, soilvol_cm3, roots_gcm3)
d96 <-
read_excel("data-raw/rootdist_ml/2020-data-from-matt/Marsden 2020 Root Biomass Data_12Feb2021.xlsx",
skip = 3, sheet = "D96") %>%
clean_names() %>%
remove_empty() %>%
slice(1:32) %>%
mutate(plot = parse_number(plot),
date = ymd("2020/07/28"),
year = year(date),
days_after_planting =96) %>%
fill(plot, rotation) %>%
mutate(plot_id = paste(year, plot, sep = "_")) %>%
mutate(
roots_g = as.numeric(root_weights_g),
soilvol_cm3 = as.numeric(soil_area_cm_3),
roots_gcm3 = as.numeric(mass_area_g_cm_3)) %>%
select(date, plot_id, depth, days_after_planting, roots_g, soilvol_cm3, roots_gcm3)
d117 <-
read_excel("data-raw/rootdist_ml/2020-data-from-matt/Marsden 2020 Root Biomass Data_12Feb2021.xlsx",
skip = 3, sheet = "D117") %>%
clean_names() %>%
remove_empty() %>%
slice(1:32) %>%
mutate(plot = parse_number(plot),
date = ymd("2020/08/18"),
year = year(date),
days_after_planting =117) %>%
fill(plot, rotation) %>%
mutate(plot_id = paste(year, plot, sep = "_")) %>%
mutate(
roots_g = as.numeric(root_weights_g),
soilvol_cm3 = as.numeric(soil_area_cm_3),
roots_gcm3 = as.numeric(mass_area_g_cm_3)) %>%
select(date, plot_id, depth, days_after_planting, roots_g, soilvol_cm3, roots_gcm3)
rd20 <-
d4 %>%
bind_rows(d27) %>%
bind_rows(d50) %>%
bind_rows(d68) %>%
bind_rows(d96) %>%
bind_rows(d117) %>%
mutate(year = year(date))
# write data ----------------------------------------------
mrs_rootdist_ml <-
rd19 %>%
bind_rows(rd20) %>%
mutate(roots_gcm3 = roots_g/soilvol_cm3,
roots_kgha =
roots_gcm3 * (1/1000) * (100^3) * 10000 * 0.15) %>% #--each depth is 15 cm
rename("dap" = days_after_planting) %>%
arrange(year, date, plot_id, depth)
mrs_rootdist_ml %>% write_csv("data-raw/rootdist_ml/mrs_rootdist_ml.csv")
usethis::use_data(mrs_rootdist_ml, overwrite = T)
# sum over entire profile -------------------------------------------------
#--plot 22, day 117 in 2020 has NAs. Eliminate it from the sum data
mrs_rootdist_ml %>%
filter(plot_id == "2020_22") %>%
arrange(-dap)
mrs_rootdist_mlsum <-
mrs_rootdist_ml %>%
filter(!(plot_id == "2020_22" & dap == 117)) %>%
group_by(year, date, dap, plot_id) %>%
summarise_if(is.numeric, sum, na.rm = T) %>%
mutate(roots_gcm3 = roots_g/soilvol_cm3,
roots_kgha = roots_gcm3 * (1/1000) * (100^3) * 10000 * 0.6)
mrs_rootdist_mlsum %>%
left_join(pk) %>%
ggplot(aes(dap, roots_kgha, color = rot_trt)) +
geom_point() +
facet_grid(year~.)
mrs_rootdist_mlsum %>% write_csv("data-raw/rootdist_ml/mrs_rootdist_mlsum.csv")
usethis::use_data(mrs_rootdist_mlsum, overwrite = T)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.