library(devtools)
# install_github("vegarsti/fhtboost")
library(foreach)
library(doParallel)
# CHECK IF LOCAL OR UIO
# directory <- "oberthur/"
# library(fhtboost)
load_all()
directory <- "../dataset/oberthuer/oberthur_all/"
oberthur_filename <- 'preproc_Oberthur_data.Rdata'
load(oberthur_filename)
has_age_observations <- which(!is.na(clinicalData[, 4]))
X <- as.matrix(scale(molecularData[has_age_observations, ]))
Z <- as.matrix(scale(clinicalData[has_age_observations, c(3, 4)]))
times <- clinicalData$time[has_age_observations]
delta <- clinicalData$status[has_age_observations]
###########################
rm(molecularData, clinicalData)
# OPTIONS
K_fold_repetitions <- 10
K <- 5
boost_intercepts_continually <- FALSE
# boost_intercepts_continually <- FALSE
# boost_intercepts_continually <- TRUE
# Set up parallel things
no_cores <- detectCores() - 1
registerDoParallel(cores=no_cores)
cl <- makeCluster(no_cores)
seeds <- 1:100
foreach(seed=seeds) %dopar% {
set.seed(seed)
seed_string <- formatC(seed, width=3, flag="0")
# Divide into test and train. test approx 1/3
num_folds <- 3
folds <- create_folds_stratified(delta, num_folds)
test_indices <- sort(folds[[1]])
train_indices <- sort(c(folds[[2]], folds[[3]]))
## TRAIN
ones_train <- rep(1, length(train_indices))
times_train <- times[train_indices]
delta_train <- delta[train_indices]
X_train_rest <- X[train_indices, ]
X_train <- as.matrix(cbind(ones_train, X_train_rest))
Z_train_rest <- Z[train_indices, ]
Z_train <- as.matrix(cbind(ones_train, Z_train_rest))
## TEST &&& SORT THESE
times_test <- times[test_indices]
delta_test <- delta[test_indices]
X_test_rest <- X[test_indices, ]
Z_test_rest <- Z[test_indices, ]
order_times <- order(times_test)
delta_test <- delta_test[order_times]
X_test_rest <- X_test_rest[order_times, ]
Z_test_rest <- Z_test_rest[order_times, ]
times_test <- sort(times_test)
ones_test <- rep(1, length(test_indices))
X_test <- as.matrix(cbind(ones_test, X_test_rest))
Z_test <- as.matrix(cbind(ones_test, Z_test_rest))
# Both
boosting_type <- "both"
M <- m_stop <- 100
CV_result <- run_CV(
M, K_fold_repetitions, K, X_train, Z_train, times_train, delta_train,
boost_intercepts_continually=boost_intercepts_continually
)
full_filename <- paste0(directory, seed_string, "_", boosting_type, "_", "loglik.csv")
write.csv(CV_result$CV_errors_K_loglik, file=full_filename, row.names=FALSE)
full_filename <- paste0(directory, seed_string, "_", boosting_type, "_", "deviance.csv")
write.csv(CV_result$CV_errors_K_deviance, file=full_filename, row.names=FALSE)
logliks <- CV_result$CV_errors_K_loglik
m_stop_from_CV <- which.min(rowMeans(logliks))
#m_stop_from_CV <- which.max(rowMeans(deviances))
### POST PROCESSING AND PLOTTING
#ylims <- c(min(apply(logliks, 2, min)), max(apply(logliks, 2, max)))
#m_stop_from_CV <- which.min(rowMeans(logliks))
#m_stop_from_CV <- which.max(rowMeans(deviances))
# full_filename <- paste0(directory, seed_string, "_", boosting_type, "_", "loglik.pdf")
# full_filename <- paste0(tex_figures_directory, "example_cv_loglik.pdf")
# pdf(full_filename, width=12, height=6)
# plot(rowMeans(logliks), typ='l', ylim=c(80, 100), ylab="Negative log-likelihood", xlab="Boosting iteration", xlim=c(0, 100))
# for (k in 1:K_fold_repetitions) {
# lines(logliks[, k], lty=3, col=rgb(0, 0, 0, alpha = 0.5))
# }
# abline(v=m_stop_from_CV, lwd=2, col='red')
# legend(
# 'topright',
# legend=c("Sum of log-lik. on test set in 5-fold CV", "Mean of log-lik. sums in 5-fold CV", "Iteration number which minimizes mean"),
# col=c(rgb(0, 0, 0, alpha = 0.5), 'black', 'red'),
# lty=c(3, 1, 1),
# lwd=c(1, 1, 2)
# )
# dev.off()
result <- boosting_run(
times=times_train,
delta=delta_train,
X=X_train,
Z=Z_train,
m_stop=m_stop_from_CV,
boost_intercepts_continually=boost_intercepts_continually,
should_print=FALSE
)
beta_hat <- result$final_parameters$beta_hat_final
gamma_hat <- result$final_parameters$gamma_hat_final
y0_hat <- exp(X_train %*% beta_hat)
mu_hat <- Z_train %*% gamma_hat
betas <- data.frame(cbind(non_null_parameters(beta_hat) - 1, beta_hat[non_null_parameters(beta_hat)]))
names(betas) <- c("j", "beta_j")
full_filename <- paste0(directory, seed_string, "_", boosting_type, "_", "beta.csv")
write.csv(betas, file=full_filename, row.names=FALSE)
gammas <- data.frame(cbind((1:length(gamma_hat)) - 1, gamma_hat))
names(gammas) <- c("j", "gamma_j")
full_filename <- paste0(directory, seed_string, "_", boosting_type, "_", "gamma.csv")
write.csv(gammas, file=full_filename, row.names=FALSE)
# Run on test set
beta_hat_null <- rep(0, dim(X_test)[2])
beta_hat_null[1] <- beta_hat[1]
gamma_hat_null <- rep(0, dim(Z_test)[2])
gamma_hat_null[1] <- gamma_hat[1]
test_null_loglikelihood <- FHT_minus_loglikelihood_with_all_parameters(
beta_hat_null, gamma_hat_null, X_test, Z_test, times_test, delta_test
)
test_loglikelihood <- FHT_minus_loglikelihood_with_all_parameters(
beta_hat, gamma_hat, X_test, Z_test, times_test, delta_test
)
test_difference_of_deviance <- 2*(test_loglikelihood - test_null_loglikelihood)
# Calculate Brier score
y0_hat <- as.numeric(exp(X_test %*% beta_hat))
mu_hat <- as.numeric(Z_test %*% gamma_hat)
y0_null <- rep(exp(beta_hat_null)[1], length(y0_hat))
mu_null <- rep(gamma_hat_null[1], length(mu_hat))
estimated_probabilities <- sapply(times_test, function(current_time) {
FHT_parametric_survival(current_time, mu_hat, y0_hat)
})
brier_score_df <- brier_score_with_censoring_on_times_with_probabilities(
times=times_test, delta=delta_test,
estimated_probabilities_matrix=estimated_probabilities
)
estimated_probabilities_null <- sapply(times_test, function(current_time) {
FHT_parametric_survival(current_time, mu_null, y0_null)
})
brier_null <- brier_score_with_censoring_on_times_with_probabilities(
times=times_test, delta=delta_test,
estimated_probabilities_matrix=estimated_probabilities_null
)
brier_df_both <- data.frame(
times=brier_score_df$times,
brier_scores_null=brier_null$brier_scores,
brier_scores_model=brier_score_df$brier_scores
)
full_filename <- paste0(directory, seed_string, "_", boosting_type, "_", "brier_data.csv")
write.csv(brier_df_both, file=full_filename, row.names=FALSE)
# Plot Brier
# full_filename <- paste0(directory, seed_string, "_", boosting_type, "_", "brier_r2_s.pdf")
# pdf(full_filename, width=12, height=6)
# plot(
# times_test_non_null_both[order(times_test_non_null_both)],
# brier_r2s_non_null_both[order(times_test_non_null_both)],
# typ='s', ylim=c(-1, 1),
# ylab="Brier R2", xlab="Time"
# )
# rug(times_test_non_null_both)
# abline(h=0, lty=3)
# dev.off()
#
#
loglikelihood_df <- data.frame(
null_loglikelihood=test_null_loglikelihood,
loglikelihood=test_loglikelihood,
deviance=test_difference_of_deviance
)
full_filename <- paste0(directory, seed_string, "_", boosting_type, "_", "test_result.csv")
write.csv(loglikelihood_df, file=full_filename, row.names=FALSE)
boosting_type <- "clinical"
# Clinical
M_clinical <- 40
CV_result_clinical <- run_CV_clinical(
M_clinical, K_fold_repetitions, K, X_train, Z_train, times_train, delta_train,
boost_intercepts_continually=boost_intercepts_continually
)
# ### WRITE CV RESULT TO FILE
full_filename <- paste0(directory, seed_string, "_", boosting_type, "_", "loglik.csv")
write.csv(CV_result_clinical$CV_errors_K_loglik, file=full_filename, row.names=FALSE)
full_filename <- paste0(directory, seed_string, "_", boosting_type, "_", "deviance.csv")
write.csv(CV_result_clinical$CV_errors_K_deviance, file=full_filename, row.names=FALSE)
## READ CV RESULT FROM FILE
full_filename <- paste0(directory, seed_string, "_", boosting_type, "_", "loglik.csv")
logliks <- read.csv(full_filename)
# full_filename <- paste0(directory, seed_string, "_", boosting_type, "_", "deviance.csv")
# deviances <- read.csv(full_filename)
### POST PROCESSING AND PLOTTING
#ylims <- c(min(apply(logliks, 2, min)), max(apply(logliks, 2, max)))
m_stop_from_CV <- which.min(rowMeans(logliks))
#m_stop_from_CV <- which.max(rowMeans(deviances))
# full_filename <- paste0(directory, seed_string, "_", boosting_type, "_", "loglik.pdf")
# pdf(full_filename, width=12, height=6)
# plot(rowMeans(logliks), typ='l', ylim=ylims, ylab="Negative log-likelihood", xlab="Boosting iteration")
# for (k in 1:K_fold_repetitions) {
# lines(logliks[, k], lty=3, col=rgb(0, 0, 0, alpha = 0.5))
# }
# abline(v=m_stop_from_CV, lwd=2, col='red')
# legend(
# 'topright',
# legend=c("Sum of log-lik. on test set in 5-fold CV", "Mean of log-lik. sums in 5-fold CV", "Iteration number which minimizes mean"),
# col=c(rgb(0, 0, 0, alpha = 0.5), 'black', 'red'),
# lty=c(3, 1, 1),
# lwd=c(1, 1, 2)
# )
# dev.off()
result <- cyclic_boosting_run(
times=times_train,
delta=delta_train,
X=X_train,
Z=Z_train,
m_stop_y0=1,
m_stop_mu=m_stop_from_CV,
boost_intercepts_continually=boost_intercepts_continually,
should_print=FALSE
)
beta_hat <- result$final_parameters$beta_hat_final
gamma_hat <- result$final_parameters$gamma_hat_final
y0_hat <- exp(X_train %*% beta_hat)
mu_hat <- Z_train %*% gamma_hat
# betas <- data.frame(cbind(non_null_parameters(beta_hat) - 1, beta_hat[non_null_parameters(beta_hat)]))
# names(betas) <- c("j", "beta_j")
# full_filename <- paste0(directory, seed_string, "_", boosting_type, "_", "beta.csv")
# write.csv(betas, file=full_filename, row.names=FALSE)
# gammas <- data.frame(cbind((1:length(gamma_hat)) - 1, gamma_hat))
# names(gammas) <- c("j", "gamma_j")
# full_filename <- paste0(directory, seed_string, "_", boosting_type, "_", "gamma.csv")
# write.csv(gammas, file=full_filename, row.names=FALSE)
#
# Run on test set
beta_hat_null <- rep(0, dim(X_test)[2])
beta_hat_null[1] <- beta_hat[1]
gamma_hat_null <- rep(0, dim(Z_test)[2])
gamma_hat_null[1] <- gamma_hat[1]
test_null_loglikelihood <- FHT_minus_loglikelihood_with_all_parameters(
beta_hat_null, gamma_hat_null, X_test, Z_test, times_test, delta_test
)
test_loglikelihood <- FHT_minus_loglikelihood_with_all_parameters(
beta_hat, gamma_hat, X_test, Z_test, times_test, delta_test
)
test_difference_of_deviance <- 2*(test_loglikelihood - test_null_loglikelihood)
# Calculate Brier score
y0_hat <- as.numeric(exp(X_test %*% beta_hat))
mu_hat <- as.numeric(Z_test %*% gamma_hat)
y0_null <- rep(exp(beta_hat_null)[1], length(y0_hat))
mu_null <- rep(gamma_hat_null[1], length(mu_hat))
estimated_probabilities <- sapply(times_test, function(current_time) {
FHT_parametric_survival(current_time, mu_hat, y0_hat)
})
brier_score_df <- brier_score_with_censoring_on_times_with_probabilities(
times=times_test, delta=delta_test,
estimated_probabilities_matrix=estimated_probabilities
)
estimated_probabilities_null <- sapply(times_test, function(current_time) {
FHT_parametric_survival(current_time, mu_null, y0_null)
})
brier_null <- brier_score_with_censoring_on_times_with_probabilities(
times=times_test, delta=delta_test,
estimated_probabilities_matrix=estimated_probabilities_null
)
brier_df_clinical <- data.frame(
times=brier_score_df$times,
brier_scores_null=brier_null$brier_scores,
brier_scores_model=brier_score_df$brier_scores
)
full_filename <- paste0(directory, seed_string, "_", boosting_type, "_", "brier_data.csv")
write.csv(brier_df_clinical, file=full_filename, row.names=FALSE)
# Plot Brier
# full_filename <- paste0(directory, seed_string, "_", boosting_type, "_", "brier_r2_s.pdf")
# pdf(full_filename, width=12, height=6)
# plot(
# times_test_non_null_clinical[order(times_test_non_null_clinical)],
# brier_r2s_non_null_clinical[order(times_test_non_null_clinical)],
# typ='s', ylim=c(-1, 1),
# ylab="Brier R2", xlab="Time"
# )
# rug(times_test_non_null_clinical)
# abline(h=0, lty=3)
# dev.off()
#
#
#
loglikelihood_df <- data.frame(
null_loglikelihood=test_null_loglikelihood,
loglikelihood=test_loglikelihood,
deviance=test_difference_of_deviance
)
full_filename <- paste0(directory, seed_string, "_", boosting_type, "_", "test_result.csv")
write.csv(loglikelihood_df, file=full_filename, row.names=FALSE)
boosting_type <- "genetic"
# Genetic
M_genetic <- 70
CV_result_genetic <- run_CV_genetic(
M_genetic, K_fold_repetitions, K, X_train, Z_train, times_train, delta_train,
boost_intercepts_continually=boost_intercepts_continually
)
#
#
# ### WRITE CV RESULT TO FILE
full_filename <- paste0(directory, seed_string, "_", boosting_type, "_", "loglik.csv")
write.csv(CV_result_genetic$CV_errors_K_loglik, file=full_filename, row.names=FALSE)
full_filename <- paste0(directory, seed_string, "_", boosting_type, "_", "deviance.csv")
write.csv(CV_result_genetic$CV_errors_K_deviance, file=full_filename, row.names=FALSE)
## READ CV RESULT FROM FILE
full_filename <- paste0(directory, seed_string, "_", boosting_type, "_", "loglik.csv")
logliks <- read.csv(full_filename)
# full_filename <- paste0(directory, seed_string, "_", boosting_type, "_", "deviance.csv")
# deviances <- read.csv(full_filename)
### POST PROCESSING AND PLOTTING
#logliks <- CV_result_genetic$CV_errors_K_loglik
#ylims <- c(min(apply(logliks, 2, min)), max(apply(logliks, 2, max)))
m_stop_from_CV <- which.min(rowMeans(logliks))
#m_stop_from_CV <- which.max(rowMeans(deviances))
# full_filename <- paste0(directory, seed_string, "_", boosting_type, "_", "loglik.pdf")
# pdf(full_filename, width=12, height=6)
# plot(rowMeans(logliks), typ='l', ylim=ylims, ylab="Negative log-likelihood", xlab="Boosting iteration")
# for (k in 1:K_fold_repetitions) {
# lines(logliks[, k], lty=3, col=rgb(0, 0, 0, alpha = 0.5))
# }
# abline(v=m_stop_from_CV, lwd=2, col='red')
# legend(
# 'topright',
# legend=c("Sum of log-lik. on test set in 5-fold CV", "Mean of log-lik. sums in 5-fold CV", "Iteration number which minimizes mean"),
# col=c(rgb(0, 0, 0, alpha = 0.5), 'black', 'red'),
# lty=c(3, 1, 1),
# lwd=c(1, 1, 2)
# )
# dev.off()
result <- cyclic_boosting_run(
times=times_train,
delta=delta_train,
X=X_train,
Z=Z_train,
m_stop_y0=m_stop_from_CV,
m_stop_mu=1,
boost_intercepts_continually=boost_intercepts_continually,
should_print=FALSE
)
beta_hat <- result$final_parameters$beta_hat_final
gamma_hat <- result$final_parameters$gamma_hat_final
y0_hat <- exp(X_train %*% beta_hat)
mu_hat <- Z_train %*% gamma_hat
# betas <- data.frame(cbind(non_null_parameters(beta_hat) - 1, beta_hat[non_null_parameters(beta_hat)]))
# names(betas) <- c("j", "beta_j")
# full_filename <- paste0(directory, seed_string, "_", boosting_type, "_", "beta.csv")
# write.csv(betas, file=full_filename, row.names=FALSE)
# gammas <- data.frame(cbind((1:length(gamma_hat)) - 1, gamma_hat))
# names(gammas) <- c("j", "gamma_j")
# full_filename <- paste0(directory, seed_string, "_", boosting_type, "_", "gamma.csv")
# write.csv(gammas, file=full_filename, row.names=FALSE)
# Run on test set
beta_hat_null <- rep(0, dim(X_test)[2])
beta_hat_null[1] <- beta_hat[1]
gamma_hat_null <- rep(0, dim(Z_test)[2])
gamma_hat_null[1] <- gamma_hat[1]
test_null_loglikelihood <- FHT_minus_loglikelihood_with_all_parameters(
beta_hat_null, gamma_hat_null, X_test, Z_test, times_test, delta_test
)
test_loglikelihood <- FHT_minus_loglikelihood_with_all_parameters(
beta_hat, gamma_hat, X_test, Z_test, times_test, delta_test
)
test_difference_of_deviance <- 2*(test_loglikelihood - test_null_loglikelihood)
# Calculate Brier score
y0_hat <- as.numeric(exp(X_test %*% beta_hat))
mu_hat <- as.numeric(Z_test %*% gamma_hat)
y0_null <- rep(exp(beta_hat_null)[1], length(y0_hat))
mu_null <- rep(gamma_hat_null[1], length(mu_hat))
estimated_probabilities <- sapply(times_test, function(current_time) {
FHT_parametric_survival(current_time, mu_hat, y0_hat)
})
brier_score_df <- brier_score_with_censoring_on_times_with_probabilities(
times=times_test, delta=delta_test,
estimated_probabilities_matrix=estimated_probabilities
)
estimated_probabilities_null <- sapply(times_test, function(current_time) {
FHT_parametric_survival(current_time, mu_null, y0_null)
})
brier_null <- brier_score_with_censoring_on_times_with_probabilities(
times=times_test, delta=delta_test,
estimated_probabilities_matrix=estimated_probabilities_null
)
brier_df_genetic <- data.frame(
times=brier_score_df$times,
brier_scores_null=brier_null$brier_scores,
brier_scores_model=brier_score_df$brier_scores
)
full_filename <- paste0(directory, seed_string, "_", boosting_type, "_", "brier_data.csv")
write.csv(brier_df_genetic, file=full_filename, row.names=FALSE)
# Plot Brier
# full_filename <- paste0(directory, seed_string, "_", boosting_type, "_", "brier_r2_s.pdf")
# pdf(full_filename, width=12, height=6)
# plot(
# times_test_non_null_genetic[order(times_test_non_null_genetic)],
# brier_r2s_non_null_genetic[order(times_test_non_null_genetic)],
# typ='s', #ylim=c(-1, 1),
# ylab="Brier R2", xlab="Time"
# )
# rug(times_test_non_null_genetic)
# abline(h=0, lty=3)
# dev.off()
#
#
#
loglikelihood_df <- data.frame(
null_loglikelihood=test_null_loglikelihood,
loglikelihood=test_loglikelihood,
deviance=test_difference_of_deviance,
average_brier_r2=average_brier_r2
)
full_filename <- paste0(directory, seed_string, "_", boosting_type, "_", "test_result.csv")
write.csv(loglikelihood_df, file=full_filename, row.names=FALSE)
# y_min <- min(min(brier_r2s_non_null_both), min(brier_r2s_non_null_clinical), min(brier_r2s_non_null_genetic))
# y_max <- max(max(brier_r2s_non_null_both), max(brier_r2s_non_null_clinical), max(brier_r2s_non_null_genetic))
# ylim <- c(y_min, y_max)
#
# colors <- c("black", "red", "blue")
# full_filename <- paste0(directory, seed_string, "_", "all_briers.pdf")
# pdf(full_filename, width=12, height=6)
# plot(
# times_test_non_null_both[order(times_test_non_null_both)],
# brier_r2s_non_null_both[order(times_test_non_null_both)],
# col=colors[1],
# ylim=ylim, xlab="Time", ylab="Brier R2", typ="s"
# )
# lines(
# times_test_non_null_clinical[order(times_test_non_null_clinical)],
# brier_r2s_non_null_clinical[order(times_test_non_null_clinical)],
# col=colors[2],
# typ='s'
# )
# lines(
# times_test_non_null_genetic[order(times_test_non_null_genetic)],
# brier_r2s_non_null_genetic[order(times_test_non_null_genetic)],
# col=colors[3],
# typ='s'
# )
# legend(
# 'bottomright',
# legend=c("Full model", "Clinical", "Genetic"),
# col=colors,
# lty = 1
# )
# abline(h=0, lty=3)
# dev.off()
# brier_mean_df <- data.frame(
# full=mean_brier_r2_both,
# clinical=mean_brier_r2_clinical,
# genetic=mean_brier_r2_genetic
# )
# full_filename <- paste0(directory, seed_string, "_", "mean_brier_scores.csv")
# write.csv(brier_mean_df, file=full_filename, row.names=FALSE)
#
# brier_median_df <- data.frame(
# full=median_brier_r2_both,
# clinical=median_brier_r2_clinical,
# genetic=median_brier_r2_genetic
# )
# full_filename <- paste0(directory, seed_string, "_", "median_brier_scores.csv")
# write.csv(brier_median_df, file=full_filename, row.names=FALSE)
if (1 == 0) {
library(CoxBoost)
library(pec)
K_fold_repetitions <- 10
boosting_type <- "cox"
K <- 5
repeated_cross_validation_cox <- function(seed, maxstep, time, status, xx, penalty, K, unpen.index=NULL) {
set.seed(seed)
cv.CoxBoost(time, status, xx, penalty=penalty, K=K, maxstepno=maxstep, unpen.index=unpen.index)$mean.logplik
}
MAX_STEPS <- 300 # more?
# Formula: CoxBoost estimator equal to mboost Cox ??
nu <- 0.1
N <- length(times_train)
lambda <- N*(1 - nu)/nu
design_matrix <- as.matrix(cbind(X_train[, -1], Z_train[, -1]))
repeated_cv_result_cox <- sapply(
1:K_fold_repetitions, repeated_cross_validation_cox, maxstep=MAX_STEPS, time=times_train, status=delta_train,
xx=design_matrix, penalty=lambda, K=K
)
mstop <- which.max(apply(repeated_cv_result_cox, 1, mean))
ymin <- min(apply(repeated_cv_result_cox, 2, min))
ymax <- max(apply(repeated_cv_result_cox, 2, max))
ylim <- c(ymin, ymax)
# plot(rowMeans(repeated_cv_result_cox), typ='l', ylim=ylim)
# for (i in 1:K_fold_repetitions) {
# lines(repeated_cv_result_cox[, i], lty=3)
# }
# abline(v=mstop, lwd=2, col='red')
cox_model <- CoxBoost(
time=times_train, status=delta_train, x=design_matrix, penalty=lambda, stepno=mstop
)
# Predict CoxBoost
design_matrix_test <- data.frame(X_test[, -1], Z_test[, -1])
linear_predictors <- as.numeric(predict(
cox_model, newdata=design_matrix_test, newtime=times_test, newstatus=delta_test, at.step=mstop, type="lp"
))
# current_time
estimate_baseline_hazard <- function(times_test, delta_test, linear_predictors) {
N <- length(times_test)
jumps <- rep(0, N)
num_events <- rep(0, N)
denominator <- rep(0, N)
# for each timepoint t_i
order_times <- order(times_test)
times_sorted <- sort(times_test)
delta_sorted <- delta_test[order_times]
exp_lp_sorted <- exp(linear_predictors)[order_times]
for (i in 1:N) {
current_time <- times_sorted[i]
at_risk_indicator <- current_time <= times_sorted
denominator[i] <- sum(at_risk_indicator * exp_lp_sorted)
is_event <- delta_sorted[i]
jumps[i] <- is_event/denominator[i]
}
A0 <- cumsum(jumps)
return(A0)
}
A0 <- estimate_baseline_hazard(times_test, delta_test, linear_predictors)
# baseline_hazard <- exp(-A0)
# plot(times_sorted, baseline_hazard, typ='s', ylim=c(0, 1), lwd=3)
# for (i in 1:5) {
# lines(times_sorted, exp(-A0*exp_lp_sorted[i]), typ='s', col='red', lty=3)
# }
# BRIER SCORES STUFF
exp_lp_sorted <- exp(linear_predictors)
N <- length(times_test)
estimated_probabilities_matrix_cox <- t(sapply(1:N, function(i) exp(-A0*exp_lp_sorted[i])))
brier_score_df <- brier_score_with_censoring_on_times_with_probabilities(
times=times_test, delta=delta_test,
estimated_probabilities_matrix=estimated_probabilities_matrix_cox
)
estimated_probabilities_null_matrix_cox <- t(matrix(rep(exp(-A0), N), nrow=N))
brier_null <- brier_score_with_censoring_on_times_with_probabilities(
times=times_test, delta=delta_test,
estimated_probabilities_matrix=estimated_probabilities_null_matrix_cox
)
brier_df_cox <- data.frame(
times=brier_score_df$times,
brier_scores_null=brier_null$brier_scores,
brier_scores_model=brier_score_df$brier_scores
)
full_filename <- paste0(directory, seed_string, "_", boosting_type, "_", "brier_data.csv")
write.csv(brier_df_cox, file=full_filename, row.names=FALSE)
# plot(
# times_test_non_null_both[order(times_test_non_null_both)],
# brier_r2s_non_null_both[order(times_test_non_null_both)],
# typ='s', ylim=c(-1, 1),
# ylab="Brier R2", xlab="Time"
# )
# abline(h=0, lty=3)
# plot(times_test_non_null_cox, brier_r2s_non_null_cox, col='red', typ='s')
# abline(h=0, lty=3)
# lines(
# times_test_non_null_both[order(times_test_non_null_both)],
# brier_r2s_non_null_both[order(times_test_non_null_both)],
# typ='s'
# )
boosting_type <- "cox_mandatory"
vector_of_clinical_indexes <- c(9979, 9980)
repeated_cv_result_cox_mandatory <- sapply(
1:K_fold_repetitions, repeated_cross_validation_cox, maxstep=MAX_STEPS, time=times_train, status=delta_train,
xx=design_matrix, penalty=lambda, K=K, unpen.index=vector_of_clinical_indexes
)
mstop_mandatory <- which.max(apply(repeated_cv_result_cox_mandatory, 1, mean))
# PLOTTING
ymin <- min(apply(repeated_cv_result_cox_mandatory, 2, min))
ymax <- max(apply(repeated_cv_result_cox_mandatory, 2, max))
ylim <- c(ymin, ymax)
# plot(rowMeans(repeated_cv_result_cox_mandatory), typ='l', ylim=ylim)
# for (i in 1:K_fold_repetitions) {
# lines(repeated_cv_result_cox_mandatory[, i], lty=3)
# }
# abline(v=mstop_mandatory, lwd=2, col='red')
cox_model_mandatory <- CoxBoost(
time=times_train, status=delta_train, x=design_matrix, penalty=lambda,
stepno=mstop_mandatory,
unpen.index=vector_of_clinical_indexes
)
linear_predictors_mandatory <- as.numeric(predict(
cox_model_mandatory, newdata=design_matrix_test, newtime=times_test, newstatus=delta_test,
at.step=mstop_mandatory, type="lp"
))
A0_mandatory <- estimate_baseline_hazard(times_test, delta_test, linear_predictors_mandatory)
exp_lp_mandatory_sorted <- exp(linear_predictors_mandatory)
estimated_probabilities_matrix_cox_mandatory <- t(sapply(1:N, function(i) exp(-A0*exp_lp_mandatory_sorted[i])))
brier_score_df <- brier_score_with_censoring_on_times_with_probabilities(
times=times_test, delta=delta_test,
estimated_probabilities_matrix=estimated_probabilities_matrix_cox_mandatory
)
estimated_probabilities_null_matrix_cox_mandatory <- t(matrix(rep(exp(-A0_mandatory), N), nrow=N))
brier_null <- brier_score_with_censoring_on_times_with_probabilities(
times=times_test, delta=delta_test,
estimated_probabilities_matrix=estimated_probabilities_null_matrix_cox_mandatory
)
brier_df_cox_mandatory <- data.frame(
times=brier_score_df$times,
brier_scores_null=brier_null$brier_scores,
brier_scores_model=brier_score_df$brier_scores
)
full_filename <- paste0(directory, seed_string, "_", boosting_type, "_", "brier_data.csv")
write.csv(brier_df_cox_mandatory, file=full_filename, row.names=FALSE)
# plot(brier_df_cox$times, brier_df_cox$brier_scores_model, typ='s')
# lines(brier_df_cox_mandatory$times, brier_df_cox_mandatory$brier_scores_model, typ='s', col='red')
}
}
stopCluster(cl)
#
# Analyzing Brier scores
mean_briers <- c()
median_briers <- c()
for (seed in 1:100) {
seed_string <- formatC(seed, width=3, flag="0")
full_filename <- paste0(directory, seed_string, "_", "mean_brier_scores.csv")
mean_briers <- rbind(mean_briers, read.csv(full_filename))
full_filename <- paste0(directory, seed_string, "_", "median_brier_scores.csv")
median_briers <- rbind(median_briers, read.csv(full_filename))
}
xlab <- bquote(.("Mean Brier") ~ R^2)
boxplot(
mean_briers$full, mean_briers$genetic, mean_briers$clinical,
xlab=xlab,
horizontal=TRUE
)
axis(2, labels=c("Full", "Genetic", "Clinical"), at=1:3, las=2)
abline(v=0, lty=3)
xlab <- bquote(.("Median Brier") ~ R^2)
boxplot(
median_briers$full, median_briers$genetic, median_briers$clinical,
xlab=xlab,
horizontal=TRUE
)
axis(2, labels=c("Full", "Genetic", "Clinical"), at=1:3, las=2)
abline(v=0, lty=3)
seed <- 30
filename <- paste0(tex_figures_directory, "gene_correlations.pdf")
pdf(filename, width=12, height=6)
par(
mfrow=(c(2, 1)),
mar = c(5,4,2,1) + 0.1
)
#dev.off()
#par(mfrow=c(2, 1))
plot(as.numeric(X[, 3191]), as.numeric(Z[, 1]), xlab="Size of gene 3191 (standardized)", ylab="Risk")
plot(as.numeric(X[, 5307]), as.numeric(Z[, 1]), xlab="Size of gene 5307 (standardized)", ylab="Risk")
dev.off()
par(mfrow=(c(1, 1)))
seed <- 30
seed_string <- formatC(seed, width=3, flag="0")
boosting_type <- "cox"
full_filename <- paste0(directory, seed_string, "_", boosting_type, "_", "brier_data.csv")
brier_df_cox <- read.csv(full_filename)
plot(brier_df_cox$times, brier_df_cox$brier_scores_model, typ='s')
boosting_type <- "both"
full_filename <- paste0(directory, seed_string, "_", boosting_type, "_", "brier_data.csv")
brier_df_both <- read.csv(full_filename)
lines(brier_df_both$times, brier_df_both$brier_scores_model, typ='s', col='red')
abline(h=0, lty=3)
boosting_type <- "cox_mandatory"
full_filename <- paste0(directory, seed_string, "_", boosting_type, "_", "brier_data.csv")
brier_df_cox_mandatory <- read.csv(full_filename)
lines(brier_df_cox_mandatory$times, brier_df_cox_mandatory$brier_scores_model, typ='s', col='blue')
boosting_type <- "genetic"
full_filename <- paste0(directory, seed_string, "_", boosting_type, "_", "brier_data.csv")
brier_df_cox_mandatory <- read.csv(full_filename)
lines(brier_df_cox_mandatory$times, brier_df_cox_mandatory$brier_scores_model, typ='s', col='black')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.