###############
# QTL_Beta_GE #
###############
# MPP GxE QTL (Beta) genetic effects
#
# Compute MPP GxE QTL genetic effects (Beta) to be used in cross-validation.
#
# @param mppData An object of class \code{mppData}.
#
# @param trait \code{Character vector} specifying which traits (environments) should be used.
#
# @param Q.eff \code{Character} expression indicating the assumption concerning
# the QTL effects: 1) "cr" for cross-specific; 2) "par" for parental; 3) "anc"
# for ancestral; 4) "biall" for a bi-allelic. Default = "cr".
#
# @param VCOV VCOV \code{Character} expression defining the type of variance
# covariance structure used. "ID" for identity, "CSRT" for within environment
# cross-specific residual terms, "CS_CSRT" for compound symmetry with within
# environment cross-specific residual terms. Default = "CS_CSRT".
#
# @param QTL Object of class \code{QTLlist} representing a list of
# selected marker positions obtained with the function QTL_select() or
# a vector of \code{character} marker positions names. Default = NULL.
#
# @param workspace Size of workspace for the REML routines measured in double
# precision words (groups of 8 bytes). The default is workspace = 8e6.
#
#
# @return Return:
#
# \item{Qeff}{\code{List} of \code{data.frame} (one per QTL) containing the
# following information:
#
# \enumerate{
#
# \item{QTL genetic effects per cross or parent.}
# \item{Standard error of the QTL effects.}
# \item{Test statistics of the effects (t-test or Wald statistic).}
# \item{P-value of the test statistics.}
# \item{Significance of the QTL effects.}
#
# }
#
# }
#
# @author Vincent Garin
#
# @examples
#
# # Come later
#
QTL_Beta_GE <- function(mppData, trait, Q.eff = "cr", VCOV = "CS_CSRT",
QTL = NULL, workspace = 8e6){
if(is.null(QTL)){stop("No 'QTL' have been provided.")}
# form the trait value
nEnv <- length(trait)
TraitEnv <- c(mppData$pheno[, trait])
# form the list of QTLs
if(is.character(QTL)){
Q.pos <- which(mppData$map[, 1] %in% QTL)
QTL <- mppData$map[mppData$map[, 1] %in% QTL, ]
} else {
Q.pos <- which(mppData$map[, 1] %in% QTL[, 1])
}
nQTL <- length(Q.pos)
Q.list <- lapply(X = Q.pos, FUN = inc_mat_QTL, mppData = mppData,
Q.eff = Q.eff, order.MAF = TRUE)
Q.names <- function(x, Q.list, nEnv){
rep(paste0("Q", x, attr(Q.list[[x]], "dimnames")[[2]]), nEnv)
}
names.QTL <- unlist(lapply(X = 1:nQTL, FUN = Q.names, Q.list = Q.list,
nEnv = nEnv))
if(Q.eff == "anc"){
n_al <- unlist(lapply(X = Q.list, FUN = function(x) dim(x)[2]))
e_lab <- paste0("E", 1:nEnv)
Env.names <- lapply(X = n_al, FUN = function(x, e_lab) rep(e_lab, each = x),
e_lab = e_lab)
Env.names <- unlist(Env.names)
} else {
n_al <- NULL
Env.names <- rep(rep(paste0("E", 1:nEnv), each = dim(Q.list[[1]])[2]), nQTL)
}
names.QTL <- paste(names.QTL, Env.names, sep = "_")
Q.list <- lapply(X = Q.list, FUN = function(x, nEnv) diag(nEnv) %x% x,
nEnv = nEnv)
names(Q.list) <- paste0("Q", 1:length(Q.list))
# Compute the model
model <- QTLModelBeta_GE(mppData = mppData, trait = TraitEnv, nEnv = nEnv,
Q.list = Q.list, VCOV = VCOV, names.QTL = names.QTL,
workspace = workspace)
# process the results
Beta <- model$coefficients$fixed
index <- substr(names(model$coefficients$fixed), 1, 9) == "grp(QTLs)"
Beta <- Beta[index]
names(Beta) <- substr(names(Beta), 11, nchar(names(Beta)))
return(Beta)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.