R/QTL_Beta_GE.R

Defines functions QTL_Beta_GE

###############
# QTL_Beta_GE #
###############

# MPP GxE QTL (Beta) genetic effects
#
# Compute MPP GxE QTL genetic effects (Beta) to be used in cross-validation.
#
# @param mppData An object of class \code{mppData}.
#
# @param trait \code{Character vector} specifying which traits (environments) should be used.
#
# @param Q.eff \code{Character} expression indicating the assumption concerning
# the QTL effects: 1) "cr" for cross-specific; 2) "par" for parental; 3) "anc"
# for ancestral; 4) "biall" for a bi-allelic. Default = "cr".
#
# @param VCOV VCOV \code{Character} expression defining the type of variance
# covariance structure used. "ID" for identity, "CSRT" for within environment
# cross-specific residual terms, "CS_CSRT" for compound symmetry with within
# environment cross-specific residual terms. Default = "CS_CSRT".
#
# @param QTL Object of class \code{QTLlist} representing a list of
# selected marker positions obtained with the function QTL_select() or
# a vector of \code{character} marker positions names. Default = NULL.
#
# @param workspace Size of workspace for the REML routines measured in double
# precision words (groups of 8 bytes). The default is workspace = 8e6.
#
#
# @return Return:
#
# \item{Qeff}{\code{List} of \code{data.frame} (one per QTL) containing the
# following information:
#
# \enumerate{
#
# \item{QTL genetic effects per cross or parent.}
# \item{Standard error of the QTL effects.}
# \item{Test statistics of the effects (t-test or Wald statistic).}
# \item{P-value of the test statistics.}
# \item{Significance of the QTL effects.}
#
# }
#
# }
#
# @author Vincent Garin
#
# @examples
#
# # Come later
#


QTL_Beta_GE <- function(mppData, trait, Q.eff = "cr", VCOV = "CS_CSRT",
                        QTL = NULL, workspace = 8e6){

  if(is.null(QTL)){stop("No 'QTL' have been provided.")}

  # form the trait value

  nEnv <- length(trait)
  TraitEnv <- c(mppData$pheno[, trait])


  # form the list of QTLs

  if(is.character(QTL)){

    Q.pos <- which(mppData$map[, 1] %in% QTL)

    QTL <- mppData$map[mppData$map[, 1] %in% QTL, ]

  } else {

    Q.pos <- which(mppData$map[, 1] %in% QTL[, 1])

  }

  nQTL <- length(Q.pos)

  Q.list <- lapply(X = Q.pos, FUN = inc_mat_QTL, mppData = mppData,
                   Q.eff = Q.eff, order.MAF = TRUE)

  Q.names <- function(x, Q.list, nEnv){
    rep(paste0("Q", x, attr(Q.list[[x]], "dimnames")[[2]]), nEnv)
  }

  names.QTL <- unlist(lapply(X = 1:nQTL, FUN = Q.names, Q.list = Q.list,
                             nEnv = nEnv))

  if(Q.eff == "anc"){

    n_al <- unlist(lapply(X = Q.list, FUN = function(x) dim(x)[2]))

    e_lab <- paste0("E", 1:nEnv)

    Env.names <- lapply(X = n_al, FUN = function(x, e_lab) rep(e_lab, each = x),
                        e_lab = e_lab)

    Env.names <- unlist(Env.names)

  } else {

    n_al <- NULL

    Env.names <- rep(rep(paste0("E", 1:nEnv), each = dim(Q.list[[1]])[2]), nQTL)

  }

  names.QTL <- paste(names.QTL, Env.names, sep = "_")

  Q.list <- lapply(X = Q.list, FUN =  function(x, nEnv) diag(nEnv) %x% x,
                   nEnv = nEnv)

  names(Q.list) <- paste0("Q", 1:length(Q.list))

  # Compute the model

  model <- QTLModelBeta_GE(mppData = mppData, trait = TraitEnv, nEnv = nEnv,
                           Q.list = Q.list, VCOV = VCOV, names.QTL = names.QTL,
                           workspace = workspace)

  # process the results

  Beta <- model$coefficients$fixed
  index <- substr(names(model$coefficients$fixed), 1, 9) == "grp(QTLs)"
  Beta <- Beta[index]
  names(Beta) <- substr(names(Beta), 11, nchar(names(Beta)))


  return(Beta)


}
vincentgarin/mppGxE documentation built on June 25, 2022, 2:45 p.m.