triple_viz: Data visualization using PCA, t-SNE and UMAP

View source: R/utility_functions.R

triple_vizR Documentation

Data visualization using PCA, t-SNE and UMAP

Description

Generates scatter plots from 2D embeddings.

Usage

triple_viz(
  data,
  category,
  category_label,
  tsne_perplexity = 45,
  umap_neighbors = 20,
  tsne = FALSE,
  pre_manifold_pca = TRUE,
  color_scale = scale_color_brewer(palette = "Dark2")
)

pca_viz(
  data,
  category,
  category_label,
  color_scale = scale_color_brewer(palette = "Dark2")
)

umap_viz(
  data,
  category,
  category_label,
  umap_neighbors = 20,
  pre_manifold_pca = TRUE,
  max_pcs = 50,
  color_scale = scale_color_brewer(palette = "Dark2")
)

tsne_viz(
  data,
  category,
  category_label,
  tsne_perplexity = 45,
  pre_manifold_pca = TRUE,
  color_scale = scale_color_brewer(palette = "Dark2")
)

Arguments

data

matrix with samples on rows

category

factor for coloring

category_label

name of color legend

tsne_perplexity

t-SNE perplexity parameter

umap_neighbors

UMAP neighbours parameter

tsne

whether to use t-SNE

pre_manifold_pca

whether to apply PCA before manifold learning (recommended for high-dimensional data)

color_scale

color scale used for category

max_pcs

maximum number of PCs (limited by data) to extract for UMAP

Value

list of plots

ggplot object

ggplot object

ggplot object

Functions

  • pca_viz(): Data visualization using PCA

  • umap_viz(): Data visualization using UMAP

  • tsne_viz(): Data visualization using t-SNE


vittoriofortino84/COPS documentation built on Jan. 28, 2025, 3:16 p.m.