Description Usage Arguments Value Examples
This is a wrapper function that expands the main Time Series
analyses function (TS) across the LDA models (estimated
using LDA or LDA_set and the 
Time Series models, with respect to both continuous time formulas and the 
number of discrete changepoints. This function allows direct passage of
the control parameters for the parallel tempering MCMC through to the 
main Time Series function, TS, via the 
ptMCMC_controls argument. 
 
check_TS_on_LDA_inputs checks that the inputs to 
TS_on_LDA are of proper classes for a full analysis.
| 1 2 3 4 5 6 7 | 
| LDA_models | List of LDA models (class  | 
| document_covariate_table | Document covariate table (rows: documents,
columns: time index and covariate options). Every model needs a
covariate to describe the time value for each document (in whatever 
units and whose name in the table is input in  | 
| formulas | Vector of  | 
| nchangepoints | Vector of  | 
| timename | 
 | 
| weights | Optional class  | 
| control | A  | 
TS_on_LDA: TS_on_LDA-class list of results 
from TS applied for each model on each LDA model input.
 
check_TS_inputs: An error message is thrown if any input
is not proper, else NULL.
| 1 2 3 4 5 6 7 8 9 |   data(rodents)
  document_term_table <- rodents$document_term_table
  document_covariate_table <- rodents$document_covariate_table
  LDAs <- LDA_set(document_term_table, topics = 2:3, nseeds = 2)
  LDA_models <- select_LDA(LDAs)
  weights <- document_weights(document_term_table)
  formulas <- c(~ 1, ~ newmoon)
  mods <- TS_on_LDA(LDA_models, document_covariate_table, formulas,
                    nchangepoints = 0:1, timename = "newmoon", weights)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.