#' @title get Jornada rodent data
#'
#' @inheritParams get_mtquad_data
#' @return list of abundance, covariates, and metadata
#'
#' @export
get_jornada_data <- function(path = file.path(get_default_data_path(),
"jornada-lter-rodent"))
{
# read in Jornada rodent data
data_tables <- import_retriever_data(path = path)
jornada <- data_tables$jornada_lter_rodent_smes_rodent_trapping
# select key columns
# filter out unknown species and recaptures
jornada_rodents <- jornada %>%
dplyr::select_at(c("year", "season", "spp", "recap")) %>%
dplyr::filter(.data$recap != "Y",
!.data$spp %in% c("DIPO1", "PERO1", "NA", "."),
!is.na(.data$spp))
# get data into wide format
# summarize counts for each species in each period
jornada_abundances <- jornada_rodents %>%
dplyr::count(.data$year, .data$season, .data$spp) %>%
tidyr::spread(key = .data$spp, value = .data$n, fill = 0)
season <- rep(0, nrow(jornada_abundances))
season[which(jornada_abundances$season == "F")] <- 0.5
jornada_abundances$time <- jornada_abundances$year + season
# split into two dataframes and save
covariates <- dplyr::select_at(jornada_abundances, c("year", "season", "time"))
abundance <- dplyr::select_at(jornada_abundances, dplyr::vars(-c("year", "season", "time")))
species_table = tibble::tibble(id = c("CHPE",
"DIME",
"DIOR",
"DISP",
"MUMU",
"NEAL",
"NEMI",
"ONAR",
"ONLE",
"PEBO",
"PEER",
"PELE",
"PEMA",
"PGFL",
"REME",
"SIHI",
"SPSP"),
genus = c("Chaetodipus",
"Dipodomys",
"Dipodomys",
"Dipodomys",
"Mus",
"Neotoma",
"Neotoma",
"Onychomys",
"Onychomys",
"Peromyscus",
"Peromyscus",
"Peromyscus",
"Peromyscus",
"Perognathus",
"Reithrodontomys",
"Sigmodon",
"Spermophilus"),
species = c("penicillatus",
"merriami",
"ordii",
"spectabilis",
"musculus",
"albigula",
"micropus",
"arenicola",
"leucogaster",
"boylii",
"eremicus",
"leucopus",
"maniculatus",
"flavus",
"megalotis",
"hispidus",
"spilosoma"))
metadata <- list(timename = "time", period = 0.5, effort = NULL,
species_table = species_table,
is_community = TRUE,
location = c("latitude" = 32.6,
"longitude" = -106.7))
out <- list(abundance = abundance,
covariates = covariates,
metadata = metadata) %>%
append_retriever_citation(path)
attr(out, "class") <- "matssdata"
return(out)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.