plotROC | R Documentation |
Perform biomarker analysis and plot ROC curve
plotROC(para, group, fID, valueID = "valueNorm", method = "rf",
ratio = 2/3, k = 100, plotCICurve = TRUE, ...)
para |
An object of |
group |
The sample class used |
valueID |
The column name used |
method |
Method for modeling |
ratio |
(The number of sample for training)/(The number of sample for Testing) |
k |
The number of sampling. Default is 100. |
plotCICurve |
Whether plot confidence interval curve in the ROC figure |
... |
Additional parameters |
The result of feature selection and modeling
para <- new("metaXpara")
pfile <- system.file("extdata/MTBLS79.txt",package = "metaX")
sfile <- system.file("extdata/MTBLS79_sampleList.txt",package = "metaX")
rawPeaks(para) <- read.delim(pfile,check.names = FALSE)
sampleListFile(para) <- sfile
para <- reSetPeaksData(para)
para <- missingValueImpute(para)
para <- transformation(para,valueID = "value")
# library(doMC)
# registerDoMC(cores = 4)
res <- featureSelection(para,group=c("C","S"), plot_roc=FALSE)
plotROC(para,group=c("C","S"),valueID="value",fID=res$optVariables)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.