Description Usage Arguments Details Value Author(s) References Examples
This function estimates the parameter(s) of a bivariate dynamic gaussian copula using maximum likelihood estimation.
1 |
data |
The matrix T x 2 margins of the two random varibles |
plot |
plot the time varying dependence parameter (plot=TRUE, default) |
This model can be used as an alternative way of connecting the marginal distributions to restore the joint distribution. Patton (2006) decomposed the conditional joint distribution of a collection of two variables into their marginal distributions and a conditional copula. Thus, we can use it to link models of the conditional marginal distributions (e.g., ARMA-GARCH models) to form a dynamic conditional joint distribution
result |
Estimated parameter, Standard error, t-stat, p-value |
AIC |
Akaiki Information Criteria |
BIC |
Bayesain Information Criteria |
Loglikelihood |
Log Likeihood function' |
tvtpdep |
the vector of time varying dependence parameter |
Woraphon Yamaka
Patton, A. J. (2006). Modelling asymmetric exchange rate dependence. International economic review, 47(2), 527-556.
Maneejuk, P., & Yamaka, W. (2019). Predicting Contagion from the US Financial Crisis to International Stock Markets Using Dynamic Copula with Google Trends. Mathematics, 7(11), 1032.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | library(VineCopula)
library("tseries")
library("quantmod")
library("PerformanceAnalytics")
tckk <- c("^N225", "CL=F") # ticker names defined
numtk <- length(tckk);
ustart <- "2010-12-30";
uend <- "2020-2-29" # start and end date
all_dat <- list(); # empty list to fill in the data
for(i in 1:numtk)
{
all_dat[[i]] <- xxx <- get.hist.quote(instrument = tckk[i], start=ustart, end=uend, quote = c("Close"), provider = "yahoo", compression = "m")
}
OIL=all_dat[[2]]+0.000001
N225=all_dat[[1]]
rOIL=diff(log(OIL))
rN225=diff(log(N225))
# normal margins
u=pnorm(rOIL/sd(rOIL))
v=pnorm(rN225/sd(rN225))
# Correlation rho
cor(u,v)
# maximum likelihood estimates for comparison
BiCopEst(u, v, family = 1, method = "mle")
# Dynamic Gaussian Copula
data=cbind(u,v)
model=dynamicnormal(data, plot=TRUE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.