dm2icc.bt: Bootstrap Confidence intervals for dbICC

Description Usage Arguments Value Author(s) References See Also Examples

View source: R/dm2icc.bt.R

Description

Nonparametric bootstrapping can be used to construct confidence intervals for the Distance-based Intraclass Correlation Coefficient (dbICC) based on samples of the subjects with replacement.

Usage

1
dm2icc.bt(dmat, nsub, nmea, nB, probs = c(0.025, 0.975), adhoc = TRUE)

Arguments

dmat

a distance matrix or an object of dist, of dimension sum(nmea)*sum(nmea). Note that the structure of the distance matrix, with the rows or columns is grouped by subjects or individuals. The details refer to Figure 4 and Table 2 of Xu el at.(2020).

nsub

number of subject or individual.

nmea

a vector containing number of the measurement for each subject or individual; if nmea is a scalar, it means each subject shares the same number of the measurement.

nB

number of bootstrap.

probs

a vector of probabilities with values in [0,1]. c(.025, .975) is default.

adhoc

a logical variable, whether to apply the ad hoc correction when estimating the dbICC from a bootstrap sample. Default is TRUE.

Value

estimates of underlying dbicc sample quantiles in probs. 95

Author(s)

Meng Xu mxu@campus.haifa.ac.il

References

See Also

plotdmat,dm2icc

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
##Point estimates of dbICC

# Generation function for R^2 points from multi-normal distribution
R2gen<-function(nsub,nmea,m=1,variance,sds=NULL,pt=FALSE){
    if (is.null(sds)==FALSE) set.seed(sds)
    if (length(nmea)==1) nmea<-rep(1,nsub)*nmea
    sig1<-diag(rep(variance,2))
    mu<-c(0,0)
    sig2<-diag(rep(1,2))
    t<-MASS::mvrnorm(nsub,mu,sig2)
    e<-MASS::mvrnorm(sum(nmea),mu,sig1/m)
    p<-matrix(apply(t,2,rep,times=nmea),ncol=2)+e#(I*J)x2
    if (pt==TRUE) return(list(t=t,p=p))
    if (pt==FALSE) return(p)
}

# set the number of the point
I <- 10

# set the number of the measurement for each point
J <- 4

# generate the sample of R^2 points
varl <- .25 # variance of the 2-d normal distribution
pij <- R2gen(I,J,variance=varl)

# calculate the squared distance matrix via Euclidean distance
distmat<-as.matrix(dist(pij))

##Bootstrap Confident intervals

dm2icc.bt(distmat, I, J, 500)

wtagr/dbicc documentation built on April 8, 2020, 7:18 p.m.