set.seed(422)
n <- 1000
mydata <- generate_syn_data(sample_size=n)
year <- sample(x=c("2001","2002","2003","2004","2005"),size = n, replace = TRUE)
ci_appr = "matching"
if (ci_appr == "matching") {
region <- sample(x=c("North", "South", "East", "West"),size = n, replace = TRUE)
mydata$year <- as.factor(year)
mydata$region <- as.factor(region)
mydata$cf5 <- as.factor(mydata$cf5)
pseudo_pop <- generate_pseudo_pop(mydata$Y,
mydata$treat,
mydata[c("cf1","cf2","cf3","cf4","cf5","cf6","year","region")],
ci_appr = "matching",
gps_model = "non-parametric",
trim_quantiles = c(0.1,0.9),
optimized_compile = TRUE,
sl_lib = c("m_xgboost"),
covar_bl_method = "absolute",
covar_bl_trs = 0.1,
covar_bl_trs_type = "mean",
max_attempt = 1,
matching_fun = "matching_l1",
delta_n = 1,
scale = 0.5,
nthread = 1)
adjusted_corr_obj <- check_covar_balance(w = pseudo_pop$pseudo_pop[, c("w")],
c = pseudo_pop$pseudo_pop[ ,pseudo_pop$covariate_cols_name, with=FALSE],
counter = pseudo_pop$pseudo_pop[, c("counter_weight")],
ci_appr="matching",
nthread=1,
covar_bl_method = "absolute",
covar_bl_trs = 0.1,
covar_bl_trs_type = "mean",
optimized_compile=TRUE)
} else if (ci_appr == "weighting"){
region <- sample(x=c("North", "South", "East", "West"),size = n, replace = TRUE)
mydata$year <- as.factor(year)
mydata$region <- as.factor(region)
mydata$cf5 <- as.factor(mydata$cf5)
pseudo_pop <- generate_pseudo_pop(mydata$Y,
mydata$treat,
mydata[c("cf1","cf2","cf3","cf4","cf5","cf6","year","region")],
ci_appr = "weighting",
gps_model = "non-parametric",
trim_quantiles = c(0.01,0.99),
optimized_compile = TRUE,
sl_lib = c("m_xgboost"),
covar_bl_method = "absolute",
covar_bl_trs = 0.1,
covar_bl_trs_type = "mean",
max_attempt = 1,
matching_fun = "matching_l1",
delta_n = 1,
scale = 0.5,
nthread = 1)
adjusted_corr_obj <- check_covar_balance_2(w = pseudo_pop$pseudo_pop[, c("w")],
c = pseudo_pop$pseudo_pop[ ,pseudo_pop$covariate_cols_name, with=FALSE],
counter = pseudo_pop$pseudo_pop[, c("ipw")],
ci_appr="weighting",
nthread=1,
covar_bl_method = "absolute",
covar_bl_trs = 0.1,
covar_bl_trs_type = "mean")
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.