## author: Naeem Khoshnevis
## created: October 2022
## purpose: Reproducing examples in https://nsaph-software.github.io/intro.html.
# Load libraries
library(ggplot2)
# CausalGPS: Matching on Generalized Propensity Scores with Continuous Exposures
# Example 1: Use all data and default values.
#
data("synthetic_us_2010", package = "CausalGPS")
synthetic_us_2010$cdc_mean_bmi[synthetic_us_2010$cdc_mean_bmi > 9000] <- NA
data <- synthetic_us_2010
confounders_s1 <- c("cs_poverty","cs_hispanic",
"cs_black",
"cs_ed_below_highschool",
"cs_median_house_value",
"cs_population_density",
"cdc_mean_bmi","cdc_pct_nvsmoker",
"gmet_mean_summer_tmmx",
"gmet_mean_summer_rmx",
"gmet_mean_summer_sph",
"cms_female_pct", "region"
)
# data pre-processing
data$region <- as.factor(data$region)
set.seed(574)
ps_pop_obj_1 <- generate_pseudo_pop(data$cms_mortality_pct,
data$qd_mean_pm25,
data.frame(data[, confounders_s1, drop=FALSE]),
ci_appr = "matching",
gps_model = "parametric",
bin_seq = NULL,
trim_quantiles = c(0.25 ,
0.99),
optimized_compile = TRUE,
use_cov_transform = TRUE,
sl_lib = c("m_xgboost"),
params = list(xgb_nrounds=seq(10,60),
xgb_eta=seq(0.04, 0.4, 0.02)),
nthread = 12,
covar_bl_method = "absolute",
covar_bl_trs = 0.1,
covar_bl_trs_type= "maximal",
max_attempt = 10,
matching_fun = "matching_l1",
delta_n = 0.1,
scale = 1)
pdf("example_w_1_covar.pdf")
plot(ps_pop_obj_1)
dev.off()
summary(ps_pop_obj_1)
# Exposure response function for example_1_4
set.seed(168)
erf <- estimate_npmetric_erf(m_Y = ps_pop_obj_1$pseudo_pop$Y,
m_w = ps_pop_obj_1$pseudo_pop$w,
counter_weight = ps_pop_obj_1$pseudo_pop$counter_weight,
bw_seq = seq(0.2,10,0.05),
w_vals = seq(7,13, 0.05),
nthread = 12)
pdf("example_w_1_erf.pdf")
plot(erf, gg_labs = c("PM2.5", "All-cause Mortality"),
gg_title = c("Exposure Response Curve"))
dev.off()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.