#' Find prototypes given clustering, and radius (maximum distance to prototype)
#'
#' Given pairwise similarities and links (a clustering), find prototypes for
#' each cluster and maximum distance to prototype for that cluster. The output
#' is a data frame with one row representing one cluster, and the metric max
#' minimax radius for the given clustering is given by max(out$minimaxRadius).
#'
#' @param allPairwise name of data frame containing all pairwise comparisons.
#' This needs to have at least four columns, one representing the first item
#' in the comparison, one representing the second item, one representing
#' whether the pair is linked in the given clustering, and the last
#' representing a distance or similarity metric. These are enumerated in the
#' next three parameters.
#' @param distSimCol name of column in `allPairwise` indicating distances or
#' similarities, input as character, e.g. "l2dist". If this is a similarity
#' and not a difference, input `myDist` parameter to be FALSE. If a similarity
#' measure is used, distance will be calcualted as 1 - similarity.
#' @param linkCol name of column in `allPairwise` with links, input as
#' character, e.g. "minimax0.4"
#' @param pairColNums vector of length 2 indicating the column numbers in
#' `allPairwise` of 1. item 1 in comparison, 2. item 2 in comparison
#' @param myDist is `distSimCol` a distance or similarity measure? Default TRUE,
#' i.e. distance measure
#'
#' @return data frame with columns `cluster`, `minimaxRadius`, `prototype`. The
#' metric max minimax radius for the given clustering is given by
#' max(out$minimaxRadius)
#'
#' @importFrom magrittr "%>%"
#' @importFrom dplyr group_by summarize
#' @export
distToPrototype <- function(allPairwise, distSimCol, linkCol, pairColNums, myDist = TRUE) {
myClusts <- getClust(allPairwise, linkCol, pairColNums)
myClusts$maxRadius <- NA # maximum radius if this item is the prototype of its cluster
for (j in 1:nrow(myClusts)) { # if item i is the prototype
tmp <- allPairwise[allPairwise[, linkCol] == 1 & (allPairwise[, pairColNums[1]] == myClusts$item[j] | allPairwise[, pairColNums[2]] == myClusts$item[j]), distSimCol]
if (length(tmp) > 0) { # if item[j] is in a cluster
if (myDist == FALSE) {
tmp <- 1 - tmp
}
myClusts$maxRadius[j] <- max(tmp)
} else { # if item[j] is a singleton
myClusts$maxRadius[j] <- 0
}
}
`%>%` <- magrittr::`%>%`
out <- myClusts %>% dplyr::group_by(cluster) %>% dplyr::summarize(minimaxRadius = min(maxRadius), prototype = item[which.min(maxRadius)])
return(out)
}
#' Going from links to clusters
#'
#' Given pairwise links as generated by `makeLinkCol()`, produce a list of
#' individual items and their cluster membership
#'
#' @param allPairwise name of data frame containing all pairwise comparisons.
#' This needs to have at least four columns, one representing the first item
#' in the comparison, one representing the second item, and one representing
#' whether the pair is linked in the given clustering. These are enumerated in
#' the next two parameters.
#' @param linkCol name of column in `allPairwise` with links (a binary indicator
#' for whether the pair is linked after hierarchical clustering), input as
#' character, e.g. "minimax0.4"
#' @param pairColNums vector of length 2 indicating the column numbers in
#' `allPairwise` of 1. item 1 in comparison, 2. item 2 in comparison
#'
#' @return data frame with two columns: `item`, the name of the item, and
#' `cluster`, the cluster number the item is a member of
#' @export
getClust <- function(allPairwise, linkCol, pairColNums) {
distMat <- longToSquare(allPairwise, pairColNums, linkCol, myDist = FALSE) # here dist is for linkCol
distObj <- as.dist(distMat)
hcluster <- hclust(distObj, method = "single") # doesn't matter because everything is already linked properly
set.seed(0)
clustersAll <- cutree(hcluster, h = .5)
hashes <- unique(c(allPairwise[, pairColNums[1]], allPairwise[, pairColNums[2]]))
hashes <- sort(hashes)
# names(clustersAll) <- hashes
outClusters <- data.frame(item = hashes, cluster = clustersAll, stringsAsFactors = FALSE)
rownames(outClusters) <- NULL
return(outClusters)
}
#' Calculate misclassification rate given pairs, model prediction and true match
#' status
#'
#' @param allPairwise name of data frame containing all pairwise comparisons.
#' This needs to have at least two columns, one representing whether the pair
#' is linked in the given clustering, and one representing the true
#' match/non-match status. These are enumerated in the next two parameters.
#' @param linkCol name of column in `allPairwise` with links, input as
#' character, e.g. "minimax0.4"
#' @param matchColNum column number of column in `allPairwise` indicating true
#' match/non-match status
#'
#' @return misclassification rate
#' @export
misclassRate <- function(allPairwise, linkCol, matchColNum) {
out <- sum(allPairwise[, linkCol] != allPairwise[, matchColNum])/nrow(allPairwise)
return(out)
}
#' Calculate precision and recall given pairs, model prediction and true match
#' status
#'
#' @param allPairwise name of data frame containing all pairwise comparisons.
#' This needs to have at least two columns, one representing whether the pair
#' is linked in the given clustering, and one representing the true
#' match/non-match status. These are enumerated in the next two parameters.
#' @param linkCol name of column in `allPairwise` with links, input as
#' character, e.g. "minimax0.4"
#' @param matchColNum column number of column in `allPairwise` indicating true
#' match/non-match status
#'
#' @return list with two items, `precision` and `recall`
#' @export
precisionRecall <- function(allPairwise, linkCol, matchColNum) {
numerator <- sum(allPairwise[, linkCol] >= .5 & allPairwise[, matchColNum] == 1) # preds are 0 or 1 so doesn't matter that i used .5
denom <- sum(allPairwise[, linkCol] >= .5)
if (denom == 0) {
precision <- 1
} else {
precision <- numerator/denom
}
recall <- numerator/sum(allPairwise[, matchColNum] == 1)
out <- list(precision = precision, recall = recall)
return(out)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.