utils::globalVariables("where")
#utils::globalVariables("any_of")
#utils::globalVariables("if_all")
#' @import stats
#' @import dimensionsR
#' @import ggplot2
#' @import bibliometrixData
#' @import forcats
#' @import ggrepel
# @import ggnetwork
#' @import pubmedR
#' @import shiny
#' @import readr
#' @import readxl
#' @import tidytext
# @importFrom plyr .
#' @importFrom dplyr %>%
#' @importFrom dplyr across
#' @importFrom dplyr tibble
#' @importFrom dplyr as_tibble
#' @importFrom dplyr between
## @importFrom dplyr filter
#' @importFrom dplyr arrange
#' @importFrom dplyr do
#' @importFrom dplyr n
#' @importFrom dplyr slice
#' @importFrom dplyr if_all
#' @importFrom dplyr any_of
#' @importFrom dplyr cummean
#' @importFrom dplyr desc
#' @importFrom dplyr group_by
#' @importFrom dplyr mutate
#' @importFrom dplyr ungroup
#' @importFrom dplyr rename
#' @importFrom dplyr rowwise
#' @importFrom dplyr summarise
#' @importFrom dplyr summarize
#' @importFrom dplyr select
#' @importFrom dplyr anti_join
#' @importFrom dplyr inner_join
#' @importFrom dplyr left_join
#' @importFrom dplyr right_join
#' @importFrom dplyr top_n
#' @importFrom dplyr relocate
#' @importFrom dplyr slice_head
#' @importFrom dplyr slice_tail
#' @importFrom plotly add_annotations
#' @importFrom plotly add_lines
#' @importFrom plotly config
#' @importFrom plotly ggplotly
#' @importFrom plotly layout
#' @importFrom plotly plot_ly
#' @importFrom plotly subplot
#' @importFrom plotly toRGB
# #' @import shinycssloaders
# #' @import shinythemes
#' @importFrom openxlsx write.xlsx
#' @importFrom tidyr gather
#' @importFrom tidyr spread
#' @importFrom tidyr pivot_wider
#' @importFrom tidyr pivot_longer
#' @importFrom tidyr replace_na
#' @importFrom tidyr separate
#' @importFrom tidyr drop_na
#' @importFrom tidyr unite
#' @importFrom tidyr starts_with
#' @importFrom tidyr unnest
#' @importFrom grDevices adjustcolor
#' @importFrom grDevices dev.off
#' @importFrom grDevices pdf
#' @importFrom DT DTOutput
#' @importFrom DT renderDT
#' @importFrom DT datatable
#' @importFrom stringdist stringdistmatrix
#' @importFrom rscopus affiliation_retrieval
#' @importFrom rscopus author_df_orig
#' @importFrom rscopus author_search
#' @importFrom rscopus get_complete_author_info
#' @importFrom RColorBrewer brewer.pal
#' @importFrom FactoMineR MCA
#' @importFrom FactoMineR CA
#' @importFrom FactoMineR PCA
#' @importFrom factoextra get_mca_var
#' @importFrom factoextra get_mca_ind
#' @importFrom factoextra get_ca_row
#' @importFrom factoextra get_ca_col
#' @importFrom factoextra fviz_nbclust
#' @importFrom factoextra fviz_cluster
#' @importFrom factoextra fviz_dend
#' @importFrom factoextra hcut
#' @importFrom igraph get.edgelist
#' @importFrom igraph graph_from_data_frame
#' @importFrom igraph as_adjacency_matrix
#' @importFrom igraph graph.adjacency
#' @importFrom igraph degree
#' @importFrom igraph plot.igraph
#' @importFrom igraph delete.vertices
#' @importFrom igraph decompose.graph
#' @importFrom igraph E
#' @importFrom igraph E<-
#' @importFrom igraph V
#' @importFrom igraph V<-
#' @importFrom igraph vcount
#' @importFrom igraph graph_attr
#' @importFrom igraph edge_density
#' @importFrom igraph transitivity
#' @importFrom igraph diameter
#' @importFrom igraph degree_distribution
#' @importFrom igraph centr_degree
#' @importFrom igraph centr_clo
#' @importFrom igraph centr_betw
#' @importFrom igraph centr_eigen
#' @importFrom igraph mean_distance
#' @importFrom igraph closeness
#' @importFrom igraph page.rank
#' @importFrom igraph eigen_centrality
#' @importFrom igraph arpack_defaults
#' @importFrom igraph authority_score
#' @importFrom igraph page_rank
#' @importFrom igraph hub_score
#' @importFrom igraph graph_from_incidence_matrix
#' @importFrom igraph graph_from_adjacency_matrix
#' @importFrom igraph simplify
#' @importFrom igraph layout.auto
#' @importFrom igraph layout.circle
#' @importFrom igraph layout.sphere
#' @importFrom igraph layout.mds
#' @importFrom igraph layout.kamada.kawai
#' @importFrom igraph layout.fruchterman.reingold
#' @importFrom igraph layout.star
#' @importFrom igraph write.graph
#' @importFrom igraph cluster_walktrap
#' @importFrom igraph cluster_optimal
#' @importFrom igraph cluster_infomap
#' @importFrom igraph cluster_edge_betweenness
#' @importFrom igraph cluster_fast_greedy
#' @importFrom igraph cluster_louvain
#' @importFrom igraph cluster_leading_eigen
#' @importFrom igraph cluster_spinglass
#' @importFrom igraph count_multiple
#' @importFrom igraph membership
#' @importFrom igraph layout.norm
#' @importFrom igraph delete.edges
#' @importFrom igraph betweenness
#' @importFrom Matrix %&%
#' @importFrom Matrix abIseq
#' @importFrom Matrix abIseq1
#' @importFrom Matrix all.equal
#' @importFrom Matrix anyDuplicatedT
#' @importFrom Matrix Arith
#' @importFrom Matrix as.array
#' @importFrom Matrix as.matrix
#' @importFrom Matrix band
#' @importFrom Matrix bandSparse
#' @importFrom Matrix bdiag
#' @importFrom Matrix cbind2
#' @importFrom Matrix chol
#' @importFrom Matrix chol2inv
#' @importFrom Matrix Cholesky
#' @importFrom Matrix coerce
#' @importFrom Matrix colMeans
#' @importFrom Matrix colSums
#' @importFrom Matrix Compare
#' @importFrom Matrix condest
#' @importFrom Matrix cov2cor
#' @importFrom Matrix crossprod
#' @importFrom Matrix det
#' @importFrom Matrix determinant
#' @importFrom Matrix diag
#' @importFrom Matrix diag<-
#' @importFrom Matrix diagN2U
#' @importFrom Matrix Diagonal
#' @importFrom Matrix diagU2N
#' @importFrom Matrix diff
#' @importFrom Matrix drop
#' @importFrom Matrix drop0
#' @importFrom Matrix expand
#' @importFrom Matrix expm
#' @importFrom Matrix fac2sparse
#' @importFrom Matrix forceSymmetric
#' @importFrom Matrix format
#' @importFrom Matrix formatSparseM
#' @importFrom Matrix formatSpMatrix
#' @importFrom Matrix graph2T
#' @importFrom Matrix head
#' @importFrom Matrix image
#' @importFrom Matrix invPerm
#' @importFrom Matrix is.null.DN
#' @importFrom Matrix isDiagonal
#' @importFrom Matrix isLDL
#' @importFrom Matrix isSymmetric
#' @importFrom Matrix isTriangular
#' @importFrom Matrix kronecker
#' @importFrom Matrix Logic
#' @importFrom Matrix lu
#' @importFrom Matrix Math
#' @importFrom Matrix Math2
#' @importFrom Matrix Matrix
#' @importFrom Matrix MatrixClass
#' @importFrom Matrix mean
#' @importFrom Matrix nnzero
#' @importFrom Matrix norm
#' @importFrom Matrix onenormest
#' @importFrom Matrix Ops
#' @importFrom Matrix pack
#' @importFrom Matrix print
#' @importFrom Matrix printSpMatrix
#' @importFrom Matrix printSpMatrix2
#' @importFrom Matrix qr
#' @importFrom Matrix qr.coef
#' @importFrom Matrix qr.fitted
#' @importFrom Matrix qr.Q
#' @importFrom Matrix qr.qty
#' @importFrom Matrix qr.qy
#' @importFrom Matrix qr.R
#' @importFrom Matrix qr.resid
#' @importFrom Matrix qrR
#' @importFrom Matrix rankMatrix
#' @importFrom Matrix rbind2
#' @importFrom Matrix rcond
#' @importFrom Matrix readHB
#' @importFrom Matrix readMM
#' @importFrom Matrix rep2abI
#' @importFrom Matrix rowMeans
#' @importFrom Matrix rowSums
#' @importFrom Matrix rsparsematrix
#' @importFrom Matrix show
#' @importFrom Matrix skewpart
#' @importFrom Matrix solve
#' @importFrom Matrix sparse.model.matrix
#' @importFrom Matrix sparseMatrix
#' @importFrom Matrix sparseVector
#' @importFrom Matrix spMatrix
#' @importFrom Matrix summary
#' @importFrom Matrix Summary
#' @importFrom Matrix symmpart
#' @importFrom Matrix t
#' @importFrom Matrix T2graph
#' @importFrom Matrix tail
#' @importFrom Matrix tcrossprod
#' @importFrom Matrix tril
#' @importFrom Matrix triu
#' @importFrom Matrix uniqTsparse
#' @importFrom Matrix unname
#' @importFrom Matrix unpack
#' @importFrom Matrix update
#' @importFrom Matrix updown
#' @importFrom Matrix which
#' @importFrom Matrix writeMM
#' @importFrom stringr str_locate_all
#' @importFrom stringr str_extract_all
#' @importFrom stringr str_replace_all
#' @importFrom graphics barplot
#' @importFrom graphics legend
#' @importFrom graphics lines
#' @importFrom graphics plot
#' @importFrom graphics par
#' @importFrom grDevices colorRampPalette
#' @importFrom grDevices as.raster
#' @importFrom utils capture.output
#' @importFrom utils data
#' @importFrom utils adist
#' @importFrom utils read.csv
#' @importFrom SnowballC wordStem
#' @importFrom SnowballC getStemLanguages
# @importFrom rio import
.onAttach<-function(...){
packageStartupMessage("To cite bibliometrix in publications, please use:\n\nAria, M. & Cuccurullo, C. (2017) bibliometrix: An R-tool for comprehensive science mapping analysis,
Journal of Informetrics, 11(4), pp 959-975, Elsevier.
\n\nhttps://www.bibliometrix.org\n
\nFor information and bug reports:
- Send an email to info@bibliometrix.org
- Write a post on https://github.com/massimoaria/bibliometrix/issues
\nHelp us to keep Bibliometrix free to download and use by contributing with a small donation to support our research team (https://bibliometrix.org/donate.html)\n
\nTo start with the shiny web-interface, please digit:
biblioshiny()\n")
}
### extract data from igraph class object
### Credits to François Briatte. Function is a fork of the package ggnetwork
dataFromIgraph <- function(
model,
data = NULL,
layout = igraph::nicely(),
arrow.gap = ifelse(igraph::is.directed(model), 0.025, 0),
by = NULL,
scale = TRUE,
stringsAsFactors = getOption("stringsAsFactors"),
...
) {
# node placement
if (inherits(layout, "matrix") && identical(dim(layout), c(igraph::gorder(model), 2L))) {
nodes <- layout[, 1:2 ]
} else if (inherits(layout, "matrix")) {
stop("layout matrix dimensions do not match network size")
} else {
nodes <- igraph::layout_(model, layout, ...)
}
format_igraph(
model = model,
nodes = nodes,
weights = "none",
arrow.gap = arrow.gap,
by = by,
scale = scale,
stringsAsFactors = stringsAsFactors,
.list_vertex_attributes_fun = igraph::list.vertex.attributes,
.get_vertex_attributes_fun = igraph::get.vertex.attribute,
.list_edges_attributes_fun = igraph::list.edge.attributes,
.get_edges_attributes_fun = igraph::get.edge.attribute,
.as_edges_list_fun = igraph::as_edgelist
)
}
### Credits to François Briatte. Function is a fork of the package ggnetwork
format_igraph <- function(
model,
nodes = NULL,
weights = NULL,
arrow.gap = ifelse(network::is.directed(model), 0.025, 0),
by = NULL,
scale = TRUE,
stringsAsFactors = getOption("stringsAsFactors"),
.list_vertex_attributes_fun = NULL,
.get_vertex_attributes_fun = NULL,
.list_edges_attributes_fun = NULL,
.get_edges_attributes_fun = NULL,
.as_edges_list_fun = NULL
) {
# store coordinates
nodes <- data.frame(nodes)
colnames(nodes) <- c("x", "y")
# rescale coordinates
if (scale) {
nodes$x <- scale_data(nodes$x)
nodes$y <- scale_data(nodes$y)
}
# import vertex attributes
if (length(.list_vertex_attributes_fun(model)) > 0) {
nodes <- cbind.data.frame(
nodes,
sapply(
X = .list_vertex_attributes_fun(model),
Y = model,
FUN = function(X, Y) .get_vertex_attributes_fun(Y, X),
simplify = FALSE
),
stringsAsFactors = stringsAsFactors
)
}
# edge list
if (inherits(model, "igraph")) {
edges <- .as_edges_list_fun(model, names = FALSE)
} else {
edges <- .as_edges_list_fun(model, attrname = weights)
}
# edge list (if there are duplicated rows)
if (nrow(edges[, 1:2, drop = FALSE]) > nrow(unique(edges[, 1:2, drop = FALSE]))) {
warning("duplicated edges detected")
}
edges <- data.frame(nodes[edges[, 1], c("x", "y")], nodes[edges[, 2], c("x", "y")])
colnames(edges) <- c("x", "y", "xend", "yend")
# arrow gap (thanks to @heike and @ethen8181 for their work on this issue)
if (arrow.gap > 0) {
x.length <- edges$xend - edges$x
y.length <- edges$yend - edges$y
arrow.gap <- arrow.gap / sqrt(x.length^2 + y.length^2)
edges$xend <- edges$x + (1 - arrow.gap) * x.length
edges$yend <- edges$y + (1 - arrow.gap) * y.length
}
# import edge attributes
if (length(.list_edges_attributes_fun(model)) > 0) {
edges <- cbind.data.frame(
edges,
sapply(
X = .list_edges_attributes_fun(model),
Y = model,
FUN = function(X, Y) .get_edges_attributes_fun(Y, X),
simplify = FALSE
),
stringsAsFactors = stringsAsFactors
)
}
if (nrow(edges) > 0) {
# drop "na" columns created by 'network' methods
# this is to ensure consistency with 'igraph' methods
if ("na" %in% colnames(nodes)) nodes$na <- NULL
if ("na" %in% colnames(edges)) edges$na <- NULL
# merge edges and nodes data
edges <- merge(nodes, edges, by = c("x", "y"), all = TRUE)
# add missing columns to nodes data
nodes$xend <- nodes$x
nodes$yend <- nodes$y
# names(nodes) <- names(edges)[1:ncol(nodes)] # columns are already named from 'nodes' and 'edges'
# make nodes data of identical dimensions to edges data
nodes[, setdiff(names(edges), names(nodes))] <- NA
# panelize nodes (for temporal networks)
if (!is.null(by)) {
nodes <- lapply(sort(unique(edges[, by])), function(x) {
y <- nodes
y[, by] <- x
y
})
nodes <- do.call(rbind, nodes)
}
return(unique(rbind(edges[!is.na(edges$xend), ], nodes)))
} else {
# add missing columns to nodes data
nodes$xend <- nodes$x
nodes$yend <- nodes$y
return(nodes)
}
}
### scale coordinates
### Credits to François Briatte. Function is a fork of the package ggnetwork
scale_data <- function(x, scale = diff(range(x))) {
if (!scale) {
x <- rep(0.5, length.out = length(x))
} else {
x <- scale(x, center = min(x), scale = scale)
}
as.vector(x)
}
## Plot edges using ggplot2
### Credits to François Briatte. Function is a fork of the package ggnetwork
geom_network_edges <- function(
mapping = NULL,
data = NULL,
position = "identity",
arrow = NULL,
curvature = 0,
angle = 90,
ncp = 5,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...
) {
if (!curvature) {
geom <- ggplot2::GeomSegment
params <- list(arrow = arrow, na.rm = na.rm, ...)
} else {
geom <- ggplot2::GeomCurve
params <- list(
arrow = arrow,
curvature = curvature,
angle = angle,
ncp = ncp,
na.rm = na.rm,
...
)
}
ggplot2::layer(
data = data,
mapping = mapping,
stat = StatEdges,
geom = geom,
position = position,
show.legend = show.legend,
inherit.aes = inherit.aes,
params = params
)
}
### Credits to François Briatte. Function is a fork of the package ggnetwork
geom_network_nodes <- function(
mapping = NULL,
data = NULL,
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...
) {
ggplot2::layer(
data = data,
mapping = mapping,
stat = StatNodes,
geom = ggplot2::GeomPoint,
position = position,
show.legend = show.legend,
inherit.aes = inherit.aes,
params = list(
na.rm = na.rm,
...
)
)
}
### Credits to François Briatte. Function is a fork of the package ggnetwork
StatEdges <- ggplot2::ggproto("StatEdges", ggplot2::Stat,
compute_layer = function(data, scales, params) {
unique(subset(data, !(x == xend & y == yend)))
}
)
### Credits to François Briatte. Function is a fork of the package ggnetwork
StatNodes <- ggplot2::ggproto("StatNodes", ggplot2::Stat,
compute_layer = function(data, scales, params) {
if (all(c("xend", "yend") %in% names(data))) {
unique(subset(data, select = c(-xend, -yend)))
} else {
unique(data)
}
}
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.