R/specDist.R

Defines functions minifm

## specDist - functions; eventually it might be better to have them as functions, not
## methods!

setMethod("specDist.meanMZmatch", signature(peakTable1="matrix", peakTable2="matrix"),
          function(peakTable1, peakTable2, matchdist=1, matchrate=1,
                   mzabs=0.001, mzppm=10, symmetric=TRUE) {

              mz1 <- peakTable1[,"mz"]
              mz2 <- peakTable2[,"mz"]
              len1 <- length(mz1)
              len2 <- length(mz2)
              dn<-NULL

              idx<-minifm(peakTable1[,"mz"],peakTable2[,"mz"],
                          mzabs=mzabs, mzppm=mzppm, symmetric=symmetric)

              for (a in 1:length(idx[[1]])) {
                  dn[a] <- abs(mz1[idx[[1]][a]]-mz2[idx[[2]][a]])
              }

              if (length(dn)>0){
                  return(  (sum(dn) / length(dn) * matchdist)
                         + ((len1+len2)/(length(dn)*2)) * matchrate )
              } else {
                  return(NA)
              }
          })

minifm <- function(v1, v2, mzabs, mzppm, symmetric) {
    tol=mzabs + (max(c(v1,v2))/1000000)*mzppm
    m <- fastMatch(v1,v2,tol=tol, symmetric=symmetric );
    idx1 <- NA
    idx2 <- NA
    idpos<-1

    for (a in 1:length(m)) {
        if (is.numeric(m[[a]])) {
            ## we have a map from v1 to v2: calculate difference
            mns <- abs(v2[m[[a]]] - v1[a])
            ## This can now be of length 1 or larger; select the smallest one
            ## and ensure we're having one index only.
            min_idx <- which.min(mns)[1]
            ## Check if that's smaller then the tolerance
            if (mns[min_idx] < (mzabs + (v1[a] / 1000000) * mzppm)) {
                idx1[idpos] <- a
                idx2[idpos] <- m[[a]][min_idx]
                idpos <- idpos + 1
            }
            ## if (min(mns) < (mzabs + (v1[a]/1000000) * mzppm)) {
            ##     idx1[idpos]<-a
            ##     ## This causes problems here.
            ##     idx2[idpos]<-m[[a]][which(mns == min(mns))]
            ##     idpos <- idpos + 1
            ## }
        }
    }
    list(idx1=idx1, idx2=idx2)
}


setMethod("specDist.cosine", signature(peakTable1="matrix", peakTable2="matrix"),
          function(peakTable1, peakTable2,  mzabs = 0.001, mzppm = 10,
                   mzExp = 0.6, intExp = 3, nPdiff = 2, nPmin = 8,
                   symmetric = FALSE) {

              len1 <- nrow(peakTable1)
              len2 <- nrow(peakTable2)

              if ((len1<len2 & len2/len1 > nPdiff)|(len1>len2 & len1/len2 > nPdiff)) {
                  return(NA)
              } else {

                  idx<-minifm(peakTable1[,"mz"],peakTable2[,"mz"],mzabs=mzabs,mzppm=mzppm, symmetric=symmetric)
                  int1<-NA
                  int2<-NA
                  if (!is.na(idx$idx1[1]) ) {
                      for (a in 1:length(idx$idx1)){
                          int1[a] <- peakTable1[idx$idx1[a],"into"]^intExp * peakTable1[idx$idx1[a],"mz"]^mzExp
                          int2[a] <- peakTable2[idx$idx2[a],"into"]^intExp * peakTable2[idx$idx2[a],"mz"]^mzExp
                      }

                      if (length(int1)>nPmin){
                          N <- length(int1)
                          Nu <- len2-N
                          Nl <- len1-N
                          Fd <- ( sum(int1 * int2) ^ 2 ) / ( sum(int1^2) * sum(int2^2))
                          summe <- 1
                          if (N>1){
                              summe <- 0
                              for (a in 2:N) {
                                  kl <- ( (int1[a] / int1[a-1]) * (int2[a-1] / int2[a]) )
                                  if (kl>=1) {
                                      h <- 1
                                  }else {
                                      h <- -1
                                  }
                                  summe <- summe + kl^h
                              }
                          }
                          Fr <- 1/N * summe
                          dist <- ((Nu + Nl)* Fd + N * Fr) / (Nu + N + Nl)
                          return(dist)
                      } else {
                          return(NA)
                      }
                  } else {
                      return(NA)
                  }
              }
          })


setMethod("specDist.peakCount", signature(peakTable1="matrix", peakTable2="matrix"),
          function(peakTable1, peakTable2, mzabs=0.001, mzppm=10,symmetric=FALSE) {
              idx<-minifm(peakTable1[,"mz"],peakTable2[,"mz"],mzabs=mzabs,mzppm=mzppm,symmetric)
              return(length(idx$idx1))
          })
xiaodfeng/DynamicXCMS documentation built on Aug. 6, 2023, 3:02 p.m.