upstream <- function(chr,gene_name,genofile,obj_nullmodel,
rare_maf_cutoff=0.01,rv_num_cutoff=2,rv_num_cutoff_max=1e9,rv_num_cutoff_max_prefilter=1e9,
QC_label="annotation/filter",variant_type=c("SNV","Indel","variant"),geno_missing_imputation=c("mean","minor"),
Annotation_dir="annotation/info/FunctionalAnnotation",Annotation_name_catalog,
Use_annotation_weights=c(TRUE,FALSE),Annotation_name=NULL,
SPA_p_filter=FALSE,p_filter_cutoff=0.05,use_ancestry_informed=FALSE,find_weight=FALSE,silent=FALSE){
## evaluate choices
variant_type <- match.arg(variant_type)
geno_missing_imputation <- match.arg(geno_missing_imputation)
phenotype.id <- as.character(obj_nullmodel$id_include)
n_pheno <- obj_nullmodel$n.pheno
## SPA status
if(!is.null(obj_nullmodel$use_SPA))
{
use_SPA <- obj_nullmodel$use_SPA
}else
{
use_SPA <- FALSE
}
## get SNV id
filter <- seqGetData(genofile, QC_label)
if(variant_type=="variant")
{
SNVlist <- filter == "PASS"
}
if(variant_type=="SNV")
{
SNVlist <- (filter == "PASS") & isSNV(genofile)
}
if(variant_type=="Indel")
{
SNVlist <- (filter == "PASS") & (!isSNV(genofile))
}
variant.id <- seqGetData(genofile, "variant.id")
rm(filter)
gc()
## upstream SNVs
GENCODE.Category <- seqGetData(genofile, paste0(Annotation_dir,Annotation_name_catalog$dir[which(Annotation_name_catalog$name=="GENCODE.Category")]))
is.in <- (GENCODE.Category=="upstream")&(SNVlist)
variant.id.upstream <- variant.id[is.in]
rm(GENCODE.Category)
gc()
seqSetFilter(genofile,variant.id=variant.id.upstream,sample.id=phenotype.id)
rm(variant.id.upstream)
gc()
GENCODE.Info <- seqGetData(genofile, paste0(Annotation_dir,Annotation_name_catalog$dir[which(Annotation_name_catalog$name=="GENCODE.Info")]))
GENCODE.Info.split <- strsplit(GENCODE.Info, split = "[,]")
variant_gene_num <- sapply(GENCODE.Info.split,function(z) length(z))
variant.id.SNV <- seqGetData(genofile, "variant.id")
variant.id.SNV <- rep(variant.id.SNV,variant_gene_num)
rm(GENCODE.Info)
gc()
rm(variant_gene_num)
gc()
Gene <- as.character(unlist(GENCODE.Info.split))
rm(GENCODE.Info.split)
gc()
seqResetFilter(genofile)
### Gene
is.in <- which(Gene==gene_name)
variant.is.in <- variant.id.SNV[is.in]
seqSetFilter(genofile,variant.id=variant.is.in,sample.id=phenotype.id)
## genotype id
id.genotype <- seqGetData(genofile,"sample.id")
# id.genotype.match <- rep(0,length(id.genotype))
id.genotype.merge <- data.frame(id.genotype,index=seq(1,length(id.genotype)))
phenotype.id.merge <- data.frame(phenotype.id)
phenotype.id.merge <- dplyr::left_join(phenotype.id.merge,id.genotype.merge,by=c("phenotype.id"="id.genotype"))
id.genotype.match <- phenotype.id.merge$index
## Genotype
Geno <- NULL
if(length(seqGetData(genofile, "variant.id"))<rv_num_cutoff_max_prefilter)
{
Geno <- seqGetData(genofile, "$dosage")
Geno <- Geno[id.genotype.match,,drop=FALSE]
}
## impute missing
if(!is.null(dim(Geno)))
{
if(dim(Geno)[2]>0)
{
if(geno_missing_imputation=="mean")
{
Geno <- matrix_flip_mean(Geno)$Geno
}
if(geno_missing_imputation=="minor")
{
Geno <- matrix_flip_minor(Geno)$Geno
}
}
}
## Annotation
Anno.Int.PHRED.sub <- NULL
Anno.Int.PHRED.sub.name <- NULL
if(variant_type=="SNV")
{
if(Use_annotation_weights)
{
for(k in 1:length(Annotation_name))
{
if(Annotation_name[k]%in%Annotation_name_catalog$name)
{
Anno.Int.PHRED.sub.name <- c(Anno.Int.PHRED.sub.name,Annotation_name[k])
Annotation.PHRED <- seqGetData(genofile, paste0(Annotation_dir,Annotation_name_catalog$dir[which(Annotation_name_catalog$name==Annotation_name[k])]))
if(Annotation_name[k]=="CADD")
{
Annotation.PHRED[is.na(Annotation.PHRED)] <- 0
}
if(Annotation_name[k]=="aPC.LocalDiversity")
{
Annotation.PHRED.2 <- -10*log10(1-10^(-Annotation.PHRED/10))
Annotation.PHRED <- cbind(Annotation.PHRED,Annotation.PHRED.2)
Anno.Int.PHRED.sub.name <- c(Anno.Int.PHRED.sub.name,paste0(Annotation_name[k],"(-)"))
}
Anno.Int.PHRED.sub <- cbind(Anno.Int.PHRED.sub,Annotation.PHRED)
}
}
Anno.Int.PHRED.sub <- data.frame(Anno.Int.PHRED.sub)
colnames(Anno.Int.PHRED.sub) <- Anno.Int.PHRED.sub.name
}
}
pvalues <- 0
if(n_pheno == 1)
{
if(!use_SPA)
{
if(use_ancestry_informed == FALSE){
try(pvalues <- STAAR(Geno,obj_nullmodel,Anno.Int.PHRED.sub,rare_maf_cutoff=rare_maf_cutoff,rv_num_cutoff=rv_num_cutoff,rv_num_cutoff_max=rv_num_cutoff_max),silent=silent)
}else{
try(pvalues <- AI_STAAR(Geno,obj_nullmodel,Anno.Int.PHRED.sub,rare_maf_cutoff=rare_maf_cutoff,rv_num_cutoff=rv_num_cutoff,rv_num_cutoff_max=rv_num_cutoff_max,find_weight=find_weight),silent=silent)
}
}else{
try(pvalues <- STAAR_Binary_SPA(Geno,obj_nullmodel,Anno.Int.PHRED.sub,rare_maf_cutoff=rare_maf_cutoff,rv_num_cutoff=rv_num_cutoff,rv_num_cutoff_max=rv_num_cutoff_max,SPA_p_filter=SPA_p_filter,p_filter_cutoff=p_filter_cutoff),silent=silent)
}
}else
{
try(pvalues <- MultiSTAAR(Geno,obj_nullmodel,Anno.Int.PHRED.sub,rare_maf_cutoff=rare_maf_cutoff,rv_num_cutoff=rv_num_cutoff,rv_num_cutoff_max=rv_num_cutoff_max),silent=silent)
}
results <- c()
if(inherits(pvalues, "list"))
{
results_temp <- rep(NA,4)
results_temp[3] <- "upstream"
results_temp[2] <- chr
results_temp[1] <- as.character(gene_name)
results_temp[4] <- pvalues$num_variant
if(!use_SPA)
{
results_temp <- c(results_temp,pvalues$cMAC,pvalues$results_STAAR_S_1_25,pvalues$results_STAAR_S_1_1,
pvalues$results_STAAR_B_1_25,pvalues$results_STAAR_B_1_1,pvalues$results_STAAR_A_1_25,
pvalues$results_STAAR_A_1_1,pvalues$results_ACAT_O,pvalues$results_STAAR_O)
}else
{
results_temp <- c(results_temp,pvalues$cMAC,
pvalues$results_STAAR_B_1_25,pvalues$results_STAAR_B_1_1,pvalues$results_STAAR_B)
}
results <- rbind(results,results_temp)
}
if(!is.null(results))
{
if(!use_SPA)
{
colnames(results) <- colnames(results, do.NULL = FALSE, prefix = "col")
colnames(results)[1:5] <- c("Gene name","Chr","Category","#SNV","cMAC")
colnames(results)[(dim(results)[2]-1):dim(results)[2]] <- c("ACAT-O","STAAR-O")
}else
{
colnames(results) <- colnames(results, do.NULL = FALSE, prefix = "col")
colnames(results)[1:5] <- c("Gene name","Chr","Category","#SNV","cMAC")
colnames(results)[dim(results)[2]] <- c("STAAR-B")
}
if(use_ancestry_informed == TRUE & find_weight == TRUE & !use_SPA){
results_weight <- results_weight1 <- results_weight2 <- c()
for(i in 1:ncol(pvalues$results_weight)){
results_weight_temp <- pvalues$results_weight[-c(1,2),i]
results_weight_temp <- unlist(pvalues$results_weight[,i][c(5:length(pvalues$results_weight[,i]), 4,3)])
names(results_weight_temp) <- colnames(results)[-c(1:5)]
results_weight <- cbind(results_weight, results_weight_temp)
colnames(results_weight)[i] <- c(i-1)
}
for(i in 1:ncol(pvalues$results_weight1)){
results_weight_temp1 <- pvalues$results_weight1[-c(1,2),i]
results_weight_temp1 <- unlist(pvalues$results_weight1[,i][c(5:length(pvalues$results_weight1[,i]), 4,3)])
names(results_weight_temp1) <- colnames(results)[-c(1:5)]
results_weight1 <- cbind(results_weight1, results_weight_temp1)
colnames(results_weight1)[i] <- c(i-1)
}
for(i in 1:ncol(pvalues$results_weight2)){
results_weight_temp2 <- pvalues$results_weight2[-c(1,2),i]
results_weight_temp2 <- unlist(pvalues$results_weight2[,i][c(5:length(pvalues$results_weight2[,i]), 4,3)])
names(results_weight_temp2) <- colnames(results)[-c(1:5)]
results_weight2 <- cbind(results_weight2, results_weight_temp2)
colnames(results_weight2)[i] <- c(i-1)
}
rownames(pvalues$weight_all_1) <- rownames(pvalues$weight_all_2) <- unique(obj_nullmodel$pop.groups)
results <- list(results,
weight_all_1 = pvalues$weight_all_1,
weight_all_2 = pvalues$weight_all_2,
results_weight = results_weight,
results_weight1 = results_weight1,
results_weight2 = results_weight2)
}
}
seqResetFilter(genofile)
return(results)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.