getCGPinfo: Given a drug and tissue type, return CGP expression and drug...

Description Usage Arguments Value Author(s)

View source: R/pRRophetic.R

Description

Given a drug and tissue type, return CGP expression and drug sensitivity data.

Usage

1
getCGPinfo(drug, tissueType = "all", dataset = "cgp2014")

Arguments

drug

The name of the drug for which you would like to predict sensitivity, one of A.443654, A.770041, ABT.263, ABT.888, AG.014699, AICAR, AKT.inhibitor.VIII, AMG.706, AP.24534, AS601245, ATRA, AUY922, Axitinib, AZ628, AZD.0530, AZD.2281, AZD6244, AZD6482, AZD7762, AZD8055, BAY.61.3606, Bexarotene, BI.2536, BIBW2992, Bicalutamide, BI.D1870, BIRB.0796, Bleomycin, BMS.509744, BMS.536924, BMS.708163, BMS.754807, Bortezomib, Bosutinib, Bryostatin.1, BX.795, Camptothecin, CCT007093, CCT018159, CEP.701, CGP.082996, CGP.60474, CHIR.99021, CI.1040, Cisplatin, CMK, Cyclopamine, Cytarabine, Dasatinib, DMOG, Docetaxel, Doxorubicin, EHT.1864, Elesclomol, Embelin, Epothilone.B, Erlotinib, Etoposide, FH535, FTI.277, GDC.0449, GDC0941, Gefitinib, Gemcitabine, GNF.2, GSK269962A, GSK.650394, GW.441756, GW843682X, Imatinib, IPA.3, JNJ.26854165, JNK.9L, JNK.Inhibitor.VIII, JW.7.52.1, KIN001.135, KU.55933, Lapatinib, Lenalidomide, LFM.A13, Metformin, Methotrexate, MG.132, Midostaurin, Mitomycin.C, MK.2206, MS.275, Nilotinib, NSC.87877, NU.7441, Nutlin.3a, NVP.BEZ235, NVP.TAE684, Obatoclax.Mesylate, OSI.906, PAC.1, Paclitaxel, Parthenolide, Pazopanib, PD.0325901, PD.0332991, PD.173074, PF.02341066, PF.4708671, PF.562271, PHA.665752, PLX4720, Pyrimethamine, QS11, Rapamycin, RDEA119, RO.3306, Roscovitine, Salubrinal, SB.216763, SB590885, Shikonin, SL.0101.1, Sorafenib, S.Trityl.L.cysteine, Sunitinib, Temsirolimus, Thapsigargin, Tipifarnib, TW.37, Vinblastine, Vinorelbine, Vorinostat, VX.680, VX.702, WH.4.023, WO2009093972, WZ.1.84, X17.AAG, X681640, XMD8.85, Z.LLNle.CHO, ZM.447439.

tissueType

Specify if you would like to traing the models on only a subset of the CGP cell lines (based on the tissue type from which the cell lines originated). This be one any of "all" (for everything, default option), "allSolidTumors" (everything except for blood), "blood", "breast", "CNS", "GI tract" ,"lung", "skin", "upper aerodigestive"

dataset

The dataset from which you wish to build the predictive models. Default is "cgp2012", also available "cgp2016", comming soon "ctrp".

Value

a list with two entries, trainDataOrd the ordered expression data and ic50sOrd the drug sensitivity data.

Author(s)

Paul Geeleher, Nancy Cox, R. Stephanie Huang


xlucpu/MOVICS documentation built on July 24, 2021, 9:23 p.m.