Description Usage Arguments Value Author(s)
Given a gene expression matrix, predict drug senstivity for a drug in CGP.
1 2 3 4 5 6 7 8 9 10 11 12 13 | pRRopheticPredict(
testMatrix,
drug,
tissueType = "all",
batchCorrect = "eb",
powerTransformPhenotype = TRUE,
removeLowVaryingGenes = 0.2,
minNumSamples = 10,
selection = -1,
printOutput = TRUE,
removeLowVaringGenesFrom = "homogenizeData",
dataset = "cgp2014"
)
|
testMatrix |
a gene expression matrix with gene names as row ids and sample names as column ids. |
drug |
the name of the drug for which you would like to predict sensitivity, one of A.443654, A.770041, ABT.263, ABT.888, AG.014699, AICAR, AKT.inhibitor.VIII, AMG.706, AP.24534, AS601245, ATRA, AUY922, Axitinib, AZ628, AZD.0530, AZD.2281, AZD6244, AZD6482, AZD7762, AZD8055, BAY.61.3606, Bexarotene, BI.2536, BIBW2992, Bicalutamide, BI.D1870, BIRB.0796, Bleomycin, BMS.509744, BMS.536924, BMS.708163, BMS.754807, Bortezomib, Bosutinib, Bryostatin.1, BX.795, Camptothecin, CCT007093, CCT018159, CEP.701, CGP.082996, CGP.60474, CHIR.99021, CI.1040, Cisplatin, CMK, Cyclopamine, Cytarabine, Dasatinib, DMOG, Docetaxel, Doxorubicin, EHT.1864, Elesclomol, Embelin, Epothilone.B, Erlotinib, Etoposide, FH535, FTI.277, GDC.0449, GDC0941, Gefitinib, Gemcitabine, GNF.2, GSK269962A, GSK.650394, GW.441756, GW843682X, Imatinib, IPA.3, JNJ.26854165, JNK.9L, JNK.Inhibitor.VIII, JW.7.52.1, KIN001.135, KU.55933, Lapatinib, Lenalidomide, LFM.A13, Metformin, Methotrexate, MG.132, Midostaurin, Mitomycin.C, MK.2206, MS.275, Nilotinib, NSC.87877, NU.7441, Nutlin.3a, NVP.BEZ235, NVP.TAE684, Obatoclax.Mesylate, OSI.906, PAC.1, Paclitaxel, Parthenolide, Pazopanib, PD.0325901, PD.0332991, PD.173074, PF.02341066, PF.4708671, PF.562271, PHA.665752, PLX4720, Pyrimethamine, QS11, Rapamycin, RDEA119, RO.3306, Roscovitine, Salubrinal, SB.216763, SB590885, Shikonin, SL.0101.1, Sorafenib, S.Trityl.L.cysteine, Sunitinib, Temsirolimus, Thapsigargin, Tipifarnib, TW.37, Vinblastine, Vinorelbine, Vorinostat, VX.680, VX.702, WH.4.023, WO2009093972, WZ.1.84, X17.AAG, X681640, XMD8.85, Z.LLNle.CHO, ZM.447439. |
tissueType |
specify if you would like to traing the models on only a subset of the CGP cell lines (based on the tissue type from which the cell lines originated). This be one any of "all" (for everything, default option), "allSolidTumors" (everything except for blood), "blood", "breast", "CNS", "GI tract" ,"lung", "skin", "upper aerodigestive" |
batchCorrect |
How should training and test data matrices be homogenized. Choices are "eb" (default) for ComBat, "qn" for quantiles normalization or "none" for no homogenization. |
powerTransformPhenotype |
Should the phenotype be power transformed before we fit the regression model? Default to TRUE, set to FALSE if the phenotype is already known to be highly normal. |
removeLowVaryingGenes |
What proportion of low varying genes should be removed? 20 percent be default |
minNumSamples |
How many training and test samples are requried. Print an error if below this threshold |
selection |
How should duplicate gene ids be handled. Default is -1 which asks the user. 1 to summarize by their or 2 to disguard all duplicates. |
printOutput |
Set to FALSE to supress output |
removeLowVaringGenesFrom |
what kind of genes should be removed |
dataset |
version of GDSC dataset |
a gene expression matrix that does not contain duplicate gene ids
Paul Geeleher, Nancy Cox, R. Stephanie Huang
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.