getConsensusClustering: Get subtypes from ConsensusClustering

Description Usage Arguments Value References Examples

View source: R/getConsensusClustering.R

Description

This function wraps the Consensus Clustering algorithm and provides standard output for 'getMoHeatmap()' and 'getConsensusMOIC()'.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
getConsensusClustering(
  data = NULL,
  N.clust = NULL,
  type = rep("gaussian", length(data)),
  norMethod = "none",
  reps = 500,
  pItem = 0.8,
  pFeature = 0.8,
  clusterAlg = "hc",
  innerLinkage = "ward.D",
  finalLinkage = "ward.D",
  distance = "pearson",
  plot = NULL,
  writeTable = F,
  title = file.path(getwd(), "consensuscluster"),
  seed = 123456,
  verbose = F
)

Arguments

data

List of matrices.

N.clust

Number of clusters.

type

Data type corresponding to the list of matrics, which can be gaussian, binomial or possion.

norMethod

A string vector indicate the normalization method for consensus clustering.

reps

An integer value to indicate the number of subsamples.

pItem

A numerical value to indicate the proportion of items to sample.

pFeature

A numerical value to indicate the proportion of features to sample.

clusterAlg

A string value to indicate the cluster algorithm.

innerLinkage

A string value to indicate the heirachical linakge method for subsampling.

finalLinkage

A string value to indicate the heirarchical method for consensus matrix.

distance

A string value to indicate the distance function.

plot

A string value to indicate the output format for heatmap.

writeTable

A logical value to indicate if writing output and log to csv.

title

A string value for output directory.

seed

A numerical value to set random seed for reproducible results.

verbose

A logical value to indicate if printing messages to the screen to indicate progress.

Value

A list with the following components:

fit an object returned by ConsensusClusterPlus.

clust.res a data.frame storing sample ID and corresponding clusters.

clust.dend a dendrogram of sample clustering.

mo.method a string value indicating the method used for multi-omics integrative clustering.

References

Monti S, Tamayo P, Mesirov J, et al (2003). Consensus Clustering: A Resampling-Based Method for Class Discovery and Visualization of Gene Expression Microarray Data. Mach Learn, 52:91-118.

Examples

1
# There is no example and please refer to vignette.

xlucpu/MOVICS documentation built on July 24, 2021, 9:23 p.m.