Description Usage Arguments Examples
Estimate the GPCM using the maximum likelihood estimation
model_gpcm_eap_scoring scores response vectors using the EAP method
model_gpcm_map_scoring scores response vectors using maximum a posteriori
model_gpcm_estimate_jmle estimates the parameters using the 
joint maximum likelihood estimation (JMLE) method
model_gpcm_estimate_mmle estimates the parameters using the 
marginal maximum likelihood estimation (MMLE) method
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34  | model_gpcm_eap_scoring(u, a, b, d, D = 1.702, prior = c(0, 1),
  bound = c(-3, 3))
model_gpcm_map_scoring(u, a, b, d, D = 1.702, prior = NULL,
  bound = c(-3, 3), nr_iter = 30, nr_conv = 0.001)
model_gpcm_dv_Pt(t, a, b, d, D)
model_gpcm_dv_Pa(t, a, b, d, D)
model_gpcm_dv_Pb(t, a, b, d, D)
model_gpcm_dv_Pd(t, a, b, d, D)
model_gpcm_dv_jmle(ix, dvp)
model_gpcm_estimate_jmle(u, t = NA, a = NA, b = NA, d = NA,
  D = 1.702, iter = 100, nr_iter = 10, conv = 1, nr_conv = 0.001,
  scale = c(0, 1), bounds_t = c(-4, 4), bounds_a = c(0.01, 2),
  bounds_b = c(-4, 4), bounds_d = c(-4, 4), priors = list(t = c(0,
  1), a = c(-0.1, 0.2), b = c(0, 1), d = c(0, 1)), decay = 1,
  debug = FALSE, true_params = NULL)
model_gpcm_dv_mmle(u_ix, quad, pdv)
model_gpcm_estimate_mmle(u, t = NA, a = NA, b = NA, d = NA,
  D = 1.702, iter = 100, nr_iter = 10, conv = 1, nr_conv = 0.001,
  bounds_t = c(-4, 4), bounds_a = c(0.01, 2), bounds_b = c(-4, 4),
  bounds_d = c(-4, 4), priors = list(t = c(0, 1), a = c(-0.1, 0.2), b =
  c(0, 1), d = c(0, 1)), decay = 1, quad_degree = "11",
  scoring = c("eap", "map"), debug = FALSE, true_params = NULL)
model_gpcm_fitplot(u, t, a, b, d, D = 1.702, insert_d0 = NULL,
  index = NULL, intervals = seq(-3, 3, 0.5), show_points = TRUE)
 | 
u | 
 the observed response matrix, 2d matrix  | 
a | 
 discrimination parameters, 1d vector (fixed value) or NA (freely estimate)  | 
b | 
 difficulty parameters, 1d vector (fixed value) or NA (freely estimate)  | 
d | 
 category parameters, 2d matrix (fixed value) or NA (freely estimate)  | 
D | 
 the scaling constant, 1.702 by default  | 
prior | 
 the prior distribution  | 
nr_iter | 
 the maximum iterations of newton-raphson  | 
nr_conv | 
 the convegence criterion for newton-raphson  | 
t | 
 ability parameters, 1d vector (fixed value) or NA (freely estimate)  | 
ix | 
 the 3d indices  | 
dvp | 
 the derivatives of P  | 
iter | 
 the maximum iterations  | 
conv | 
 the convergence criterion of the -2 log-likelihood  | 
scale | 
 the scale of theta parameters  | 
bounds_t | 
 bounds of ability parameters  | 
bounds_a | 
 bounds of discrimination parameters  | 
bounds_b | 
 bounds of location parameters  | 
bounds_d | 
 bounds of category parameters  | 
priors | 
 a list of prior distributions  | 
decay | 
 decay rate  | 
debug | 
 TRUE to print debuggin information  | 
true_params | 
 a list of true parameters for evaluating the estimation accuracy  | 
quad_degree | 
 the number of quadrature points  | 
scoring | 
 the scoring method: 'eap' or 'map'  | 
insert_d0 | 
 insert an initial category value  | 
index | 
 the indices of items being plotted  | 
intervals | 
 intervals on the x-axis  | 
show_points | 
 TRUE to show points  | 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21  | with(model_gpcm_gendata(10, 40, 3), cbind(true=t, est=model_gpcm_eap_scoring(u, a, b, d)$t))
with(model_gpcm_gendata(10, 40, 3), cbind(true=t, est=model_gpcm_map_scoring(u, a, b, d)$t))
## Not run: 
# generate data
x <- model_gpcm_gendata(1000, 40, 3)
# free calibration
y <- model_gpcm_estimate_jmle(x$u, true_params=x)
# no priors
y <- model_gpcm_estimate_jmle(x$u, priors=NULL, true_params=x)
## End(Not run)
## Not run: 
# generate data
x <- model_gpcm_gendata(1000, 40, 3)
# free estimation
y <- model_gpcm_estimate_mmle(x$u, true_params=x)
# no priors
y <- model_gpcm_estimate_mmle(x$u, priors=NULL, true_params=x)
## End(Not run)
with(model_gpcm_gendata(1000, 20, 3), model_gpcm_fitplot(u, t, a, b, d, index=c(1, 3, 5)))
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.