library(data.table)
library(GenomicRanges)
library(rdist)
library(reshape2)
source('met_matrix_processing.R')
source('classes.R')
#dataset = 'scmandt_muscle'
#samples = c('GSM')
#dataset = 'scmandt'
#samples = c('Serum')
#dataset = 'scnmt'
#sample_name = 'combined'
dataset = 'scnmt_gastr'
sample_name = 'combined'
run_parallel = T
part_rate = 0.2
#part_rate = 0
#bin_size = 200
bin_size = 500
num_neighbors = 20
data_dir = paste0('public_met/',dataset ,'/data/')
part_dir = paste0('public_met/',dataset ,'/data/part/')
dir.create(part_dir)
binned_met_dir = paste0('public_met/',dataset ,'/data/binned_met/')
if(run_parallel)
{
library(doSNOW)
cl <- makeCluster(36, outfile="", type = 'SOCK')
registerDoSNOW(cl)
}
list_meta_objects = list()
meta_list_file = paste0(part_dir, '/meta_list.bin_size_', bin_size, '.',
sample_name, '.part_rate_', part_rate,'.num_nei_',num_neighbors,'.rds')
metric = 'met_count'
binned_met_shared_rds = paste0(binned_met_dir, '/binned_met.bin_size_',bin_size, '.shared.', metric, '.',sample_name,'.rds')
metric = 'demet_count'
binned_demet_shared_rds = paste0(binned_met_dir, '/binned_met.bin_size_',bin_size, '.shared.', metric, '.',sample_name,'.rds')
exp_shared_file = paste0(data_dir,'/expression_matrix/count_matrix.shared.',sample_name,'.rds')
df_exp = readRDS(exp_shared_file)
dim(df_exp)
df_exp[1:5, 1:5]
df_met_shared = readRDS(binned_met_shared_rds)
dim(df_met_shared)
df_met_shared[1:5, 1:5]
df_demet_shared = readRDS(binned_demet_shared_rds)
dim(df_demet_shared)
df_demet_shared[1:5, 1:5]
length(unique(df_met_shared$gene_symbol))
print(meta_list_file)
if(part_rate > 0)
{
list_part_cells_file = paste0(part_dir, '/' , part_rate ,'/list_part_cells.',sample_name,'.rds')
list_part_cells = readRDS(list_part_cells_file)
all_cells = unique(df_met_shared$cell)
for(i in 1:length(list_part_cells))
{
cells_leaveout = as.character(list_part_cells[[i]] )
cells_keep = setdiff(all_cells, cells_leaveout)
df_met_part_keep = df_met_shared[df_met_shared$cell %in% cells_keep, ]
df_demet_part_keep = df_demet_shared[df_demet_shared$cell %in% cells_keep, ]
df_met_part_leaveout = df_met_shared[df_met_shared$cell %in% cells_leaveout, ]
df_demet_part_leaveout = df_demet_shared[df_demet_shared$cell %in% cells_leaveout, ]
df_exp_part_keep = df_exp[, cells_keep]
df_exp_part_leaveout = df_exp[, cells_leaveout]
print(df_exp_part_keep[1:5, 1:5])
print(df_exp_part_leaveout[1:5, 1:5])
dim(df_met_part_keep)
dim(df_demet_part_keep)
dim(df_met_part_leaveout)
dim(df_demet_part_leaveout)
meta_keep = compute_meta_cells(df_met_shared = df_met_part_keep, df_demet_shared = df_demet_part_keep, df_exp = df_exp_part_keep, exp_aggr_type = 'sum')
meta_leaveout = compute_meta_cells(df_met_shared = df_met_part_leaveout, df_demet_shared = df_demet_part_leaveout, df_exp = df_exp_part_leaveout,
exp_aggr_type = 'sum')
list_meta_objects[[i]] = list('meta_keep' = meta_keep, 'meta_leaveout' = meta_leaveout)
}
}else
{
meta_object = compute_meta_cells(df_met_shared = df_met_shared, df_demet_shared = df_demet_shared, df_exp = df_exp, exp_aggr_type = 'sum')
list_meta_objects[[1]] = list('meta_keep' = meta_object)
}
saveRDS(list_meta_objects, file = meta_list_file)
print(meta_list_file)
stopCluster(cl)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.