View source: R/DA-test-multiple-groups.R
run_test_multiple_groups | R Documentation |
Statistical test for multiple groups
run_test_multiple_groups(
ps,
group,
taxa_rank = "all",
transform = c("identity", "log10", "log10p"),
norm = "TSS",
norm_para = list(),
method = c("anova", "kruskal"),
p_adjust = c("none", "fdr", "bonferroni", "holm", "hochberg", "hommel", "BH", "BY"),
pvalue_cutoff = 0.05,
effect_size_cutoff = NULL
)
ps |
a |
group |
character, the variable to set the group |
taxa_rank |
character to specify taxonomic rank to perform
differential analysis on. Should be one of
|
transform |
character, the methods used to transform the microbial
abundance. See
|
norm |
the methods used to normalize the microbial abundance data. See
|
norm_para |
arguments passed to specific normalization methods |
method |
test method, must be one of "anova" or "kruskal" |
p_adjust |
method for multiple test correction, default |
pvalue_cutoff |
numeric, p value cutoff, default 0.05. |
effect_size_cutoff |
numeric, cutoff of effect size default |
a microbiomeMarker
object.
run_posthoc_test()
,run_test_two_groups()
,run_simple_stat()
data(enterotypes_arumugam)
ps <- phyloseq::subset_samples(
enterotypes_arumugam,
Enterotype %in% c("Enterotype 3", "Enterotype 2", "Enterotype 1")
)
mm_anova <- run_test_multiple_groups(
ps,
group = "Enterotype",
method = "anova"
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.