R/rewlr_fit_plus.R

rewlr_fit <- function (y ,x, lambda, w0, w1, iter, tol) {
  B <- matrix(rep(0, ncol(x)))
  p <- c(); v <- c(); w <- c(); z <- c()
  dev <- 0
  dev1 <- 1
  cx <- 0
  n <- nrow(x)
  pq <- ncol(x)
  rnm <- colnames(x)
  result <- list()
  while(abs((dev - dev1) / dev1) > tol & cx <= iter)  {
    dev <- dev1
    for(i in 1:n) {
      p[i] <- 1/(1 + exp(-x[i, ] %*% B))
      v[i] <- p[i] * (1 - p[i])
      w[i] <- w1 * y[i] + w0 * (1 - y[i])
      z_part <- (y[i] - p[i])/(p[i] * (1 - p[i]))
      z_part <- ifelse(is.nan(z_part), 0, ifelse(is.infinite(z_part) & z_part > 0, 99999,
                       ifelse(is.infinite(z_part) & z_part < 0, -99999,  z_part)))
      z[i] <- x[i, ] %*% B + z_part
    }
    D <- c(w * v)
    #Q <- x %*% solve(t(x) %*% D %*% x +  lambda * diag(pq)) %*% t(x)
    txD <- sapply(1:nrow(x), function(z) x[z, ] * D[z])
    Q1 <- solve(mmult(txD, x) +  lambda * diag(pq))
    Q2 <- mmult(x, Q1)
  #  x2 <- t(x)
   # Q <- eigenMapMatMult(Q2, x2)

    Qii <- colSums(t(Q2) * t(x))

    Xik <- c()
    for(k in 1:n){
      Xik[k] <- 1/2 * Qii[i] * ((1 + w1) * p[k] - w1)
    }

    #-----Rewl_algorithm 2----
    A = txD %*% x +  lambda * diag(pq)
    b = txD %*% as.matrix(z)


    B <- cg_cpp(A, b, B)

    #-----Rewl_algorithm 3----
    A1 =  txD %*% x +  lambda * diag(pq)
    b1 = t(x) %*% (D * Xik)

    B_bias_x <- matrix(runif(pq))
    B_bias <- cg_cpp(A1, b1, B_bias_x)

    ll_temp <- c()
    for(j in 1:length(y)) {
      ll_temp_1 <- w[j] * log(exp(y[j] * c(x[j, ] %*% B)) /(1 + exp(c(x[j, ] %*% B))))
      ll_temp[j] <-  ifelse(is.nan(ll_temp_1), 0, ifelse(is.infinite(ll_temp_1) & ll_temp_1 > 0, 99999,
                                                   ifelse(is.infinite(ll_temp_1) & ll_temp_1 < 0, -99999,  ll_temp_1)))
    }

    LogL <- sum(ll_temp) - lambda * (norm(B)^2) / 2
    dev1 <- - 2 * LogL
    cx <- cx + 1

  }
  ll_temp_null <- c()
  null_model <- log(mean(y) / (1 - mean(y)))
  for(j in 1:length(y)) {
    ll_temp_null[j] <- w[j] * log(exp(y[j] * null_model) /
                                 (1 + exp(null_model)))
  }

  LogLNULL <- sum(ll_temp_null) #- lambda * (norm(B)^2) / 2
  result$B  <- B - B_bias
  rownames(result$B) <- rnm
  cov_B <- solve(-(-txD %*% x - lambda * diag(pq)))
  result$x <- x
  result$y <- y
  result$fitted <- 1 / (1 + exp(-x %*% result$B))
  result$std_error <- (sqrt(diag(cov_B)))
  result$wald <- result$B/result$std_error
  result$wald_all <- t(B) %*% cov_B %*% B
 # result$p <- 1 / (1 + exp(-x %*% result$B ))
  result$aic <- 2 * (pq - 1) - sum(ll_temp)
  result$null_dev <- 2 * (1 - LogLNULL)
  result$res_dev <- 2 * (1 - sum(ll_temp))
  result$df_null <- n - 1
  result$df_res <- n - (pq - 1)
  result$PseudoR2 <- 1 - (sum(ll_temp)  / LogLNULL)
 # result$auc <- as.numeric(pROC::roc(c(y), c(result$fitted))$auc)
  return(result)
  }
zaenalium/rewlr documentation built on Oct. 3, 2019, 11:11 a.m.