cl | R Documentation |
Computes the Chen-Linkens index (Chen & Linkens, 2004) in order to validate the result of a fuzzy and/or possibilistic clustering analysis.
cl(u, m, t=NULL, eta, tidx="f")
u |
an object of class ‘ppclust’ containing the clustering results from a fuzzy clustering algorithm in the package ppclust. Alternatively, a numeric data frame or matrix containing the data set. |
t |
a numeric data frame or matrix containing the cluster prototypes. It should be specified if |
m |
a number specifying the fuzzy exponent. It should be specified if |
eta |
a number specifying the typicality exponent. It should be specified if |
tidx |
a character specifying the type of index. The default is ‘f’ for fuzzy index. The other options are ‘e’ for extended and ‘g’ for generalized index. |
Chen-Linkens (CL) index consists of two terms. The first term reflects the compactness within a cluster. The second one indicates the separation between clusters (Chen & Linkens, 2004). The formula of CL index is:
I_{CL}=\frac{1}{n} ∑\limits_{i=1}^n \max\limits_j (u_{ij}) - \frac{1}{K} ∑\limits_{j=1}^{k-1} ∑\limits_{l=j+1}^k \Big[ \frac{1}{n} ∑\limits_{i=1}^n \min(u_{ij}, u_{il})\Big]
In the above equation K is a summation as follows:
K=∑\limits_{j=1}^{k-1} j
The optimal clustering is obtained at the maximum value of I_{CL}.
cl |
CL index value if |
cl.e |
extended CL index value if |
cl.g |
generalized CL index value if |
Zeynel Cebeci
Chen, M. Y. & Linkens, D. A. (2004). Rule-base self-generation and simplification for data-driven fuzzy models. Fuzzy Sets and Systems, 142(2):243-265. <doi:10.1016/S0165-0114(03)00160-X>
allindexes
,
apd
,
cs
,
cwb
,
fhv
,
fs
,
kpbm
,
kwon
,
mcd
,
mpc
,
pbm
,
pc
,
pe
,
sc
,
si
,
tss
,
ws
,
xb
# Load the dataset iris and use the first four feature columns data(iris) x <- iris[,1:4] # Run FCM algorithm in the package ppclust res.fcm <- ppclust::fcm(x, centers=3) # Compute the CL index using res.fcm, which is a ppclust object idx <- cl(res.fcm) print(idx) # Compute the XB index using X and U matrices idx <- cl(u=res.fcm$u, m=2) print(idx) # Run UPFC algorithm in the package ppclust res.upfc <- ppclust::upfc(x, centers=3) # Compute the generalized CL index using res.upfc, which is a ppclust object idx <- cl(res.upfc, tidx="g") print(idx)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.