tss | R Documentation |
Computes the Tang, Sun & Sun (Tang et al, 2005) index in order to validate the result of a fuzzy and/or possibilistic clustering analysis.
tss(x, u, v, m, t=NULL, eta, tidx="f")
x |
an object of class ‘ppclust’ containing the clustering results from a fuzzy clustering algorithm in the package ppclust. Alternatively, a numeric data frame or matrix containing the data set. |
u |
a numeric data frame or matrix containing the fuzzy membership values. It should be specified if |
v |
a numeric data frame or matrix containing the cluster prototypes. It should be specified if |
t |
a numeric data frame or matrix containing the cluster prototypes. It should be specified if |
m |
a number specifying the fuzzy exponent. It should be specified if |
eta |
a number specifying the typicality exponent. It should be specified if |
tidx |
a character specifying the type of index. The default is ‘f’ for fuzzy index. The other options are ‘e’ for extended and ‘g’ for generalized index. |
Tang, Sun & Sun Index (TSS) index for fuzzy clustering has been proposed to eliminate the monotonically decreasing tendency as the number of clusters approaches to the number of data points and avoid the numerical instability of validation index when fuzzy weighting exponent increases (Tang et al, 2005).The index is defined as follows:
I_{TSS}=\frac{∑\limits_{i=1}^n ∑\limits_{j=1}^k u_{ij}^m \; d_{ij}^2 + \frac{1}{k (k-1)} \; ∑\limits_{j=1}^k ∑\limits_{l,j\neq l}^k ||\vec{v_j}-\vec{v_l}||^2}{\min\limits_{j\neq l} (||\vec{v_j} - \vec{v_l}||^2) +\frac{1}{k}}
The optimal clustering is obtained at the minimum value of I_{TSS}.
tss |
TSS index value if |
tss.e |
extended TSS index value if |
tss.g |
generalized TSS index value if |
Zeynel Cebeci
Tang, Y., Sun, F. & Sun, Z. (2005). Improved validation index for fuzzy clustering. In Proc. of the American Control Conference, 2005. pp. 1120-1125. IEEE. <doi:10.1109/ACC.2005.1470111>
allindexes
,
apd
,
cl
,
cs
,
cwb
,
fhv
,
fs
,
kpbm
,
kwon
,
mcd
,
mpc
,
pbm
,
pc
,
pe
,
sc
,
si
,
ws
,
xb
# Load the dataset iris data(iris) x <- iris[,1:4] # Run FCM algorithm in the package ppclust res.fcm <- ppclust::fcm(x, centers=3) # Compute the TSS index using res.fcm, which is a ppclust object idx <- tss(res.fcm) print(idx) # Compute the TSS index using X, U and V matrices idx <- tss(res.fcm$x, res.fcm$u, res.fcm$v) print(idx) # Run UPFC algorithm in the package ppclust res.upfc <- ppclust::upfc(x, centers=3) # Compute the generalized TSS index using res.upfc, which is a ppclust object idx <- tss(res.upfc, tidx="g") print(idx)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.