fs | R Documentation |
Computes the Fukuyama-Sugeno (Fukuyama & Sugeno, 1989) index for validating the result of a fuzzy and/or possibilistic cluster analysis.
fs(x, u, v, m, t=NULL, eta, tidx="f")
x |
an object of class ‘ppclust’ containing the clustering results from a fuzzy clustering algorithm in the package ppclust. Alternatively, a numeric data frame or matrix containing the data set. |
u |
a numeric data frame or matrix containing the fuzzy membership values. It should be specified if |
v |
a numeric data frame or matrix containing the cluster prototypes. It should be specified if |
t |
a numeric data frame or matrix containing the cluster prototypes. It should be specified if |
m |
a number specifying the fuzzy exponent. It should be specified if |
eta |
a number specifying the typicality exponent. It should be specified if |
tidx |
a character specifying the type of index. The default is ‘f’ for fuzzy index. The other options are ‘e’ for extended and ‘g’ for generalized index. |
In the Fukuyama-Sugeno index by (Fukuyama & Sugeno, 1989), the sum of inter- and intra-cluster differences are used to define the index formula as follows:
I_{FS}=∑\limits_{i=1}^n ∑\limits_{j=1}^k u_{ij}^m \; (d_{ij}^2 - ||\vec{v_j}-\bar{v}||^2)
The first term in the above equation measures the compactness of the clusters while the second term measures the distances of the clusters representatives (Halkidi et al, 2002b). The minimum I_{FS} indicates the optimal clustering.
fs |
FS index if |
fs.e |
extended FS index if |
fs.g |
generalized FS index if |
Zeynel Cebeci
Fukuyama, Y. & Sugeno, M. (1989). A new method of choosing the number of cluster for the fuzzy c-means method, Proc. of the 5th Fuzzy Systems Symp., 247-250.
Halkidi, M., Batistakis, Y., & Vazirgiannis, M. (2002b). Clustering validity checking methods: part II. ACM Sigmod Record, 31(3):19-27. <doi:10.1145/601858.601862>
allindexes
,
apd
,
cl
,
cs
,
cwb
,
fhv
,
kpbm
,
kwon
,
mcd
,
mpc
,
pbm
,
pc
,
pe
,
sc
,
si
,
tss
,
ws
,
xb
# Load the dataset iris and use the first four feature columns data(iris) x <- iris[,1:4] # For 3 clusters, run FCM algorithm in the package ppclust res.fcm <- ppclust::fcm(x, centers=3) # Compute the FS index using ppclust object idx <- fs(res.fcm) print(idx) # Compute the FS index using X,U and V matrices idx <- fs(res.fcm$x, res.fcm$u, res.fcm$v, m=2) print(idx)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.