fs: Fukuyama-Sugeno Index

View source: R/fs.R

fsR Documentation

Fukuyama-Sugeno Index

Description

Computes the Fukuyama-Sugeno (Fukuyama & Sugeno, 1989) index for validating the result of a fuzzy and/or possibilistic cluster analysis.

Usage

fs(x, u, v, m, t=NULL, eta, tidx="f")

Arguments

x

an object of class ‘ppclust’ containing the clustering results from a fuzzy clustering algorithm in the package ppclust. Alternatively, a numeric data frame or matrix containing the data set.

u

a numeric data frame or matrix containing the fuzzy membership values. It should be specified if x is not an object of ‘ppclust’.

v

a numeric data frame or matrix containing the cluster prototypes. It should be specified if x is not an object of ‘ppclust’.

t

a numeric data frame or matrix containing the cluster prototypes. It should be specified if x is not an object of ‘ppclust’ and the option e or g is assigned to tidx.

m

a number specifying the fuzzy exponent. It should be specified if x is not an object of ‘ppclust’.

eta

a number specifying the typicality exponent. It should be specified if x is not an object of ‘ppclust’ and tidx is either e or g.

tidx

a character specifying the type of index. The default is ‘f’ for fuzzy index. The other options are ‘e’ for extended and ‘g’ for generalized index.

Details

In the Fukuyama-Sugeno index by (Fukuyama & Sugeno, 1989), the sum of inter- and intra-cluster differences are used to define the index formula as follows:

I_{FS}=∑\limits_{i=1}^n ∑\limits_{j=1}^k u_{ij}^m \; (d_{ij}^2 - ||\vec{v_j}-\bar{v}||^2)

The first term in the above equation measures the compactness of the clusters while the second term measures the distances of the clusters representatives (Halkidi et al, 2002b). The minimum I_{FS} indicates the optimal clustering.

Value

fs

FS index if tidx is ‘f’

fs.e

extended FS index if tidx is ‘e’

fs.g

generalized FS index if tidx is ‘g’

Author(s)

Zeynel Cebeci

References

Fukuyama, Y. & Sugeno, M. (1989). A new method of choosing the number of cluster for the fuzzy c-means method, Proc. of the 5th Fuzzy Systems Symp., 247-250.

Halkidi, M., Batistakis, Y., & Vazirgiannis, M. (2002b). Clustering validity checking methods: part II. ACM Sigmod Record, 31(3):19-27. <doi:10.1145/601858.601862>

See Also

allindexes, apd, cl, cs, cwb, fhv, kpbm, kwon, mcd, mpc, pbm, pc, pe, sc, si, tss, ws, xb

Examples

# Load the dataset iris and use the first four feature columns 
data(iris)
x <- iris[,1:4]

# For 3 clusters, run FCM algorithm in the package ppclust 
res.fcm <- ppclust::fcm(x, centers=3)

# Compute the FS index using ppclust object
idx <- fs(res.fcm)
print(idx)
 
# Compute the FS index using X,U and V matrices
idx <- fs(res.fcm$x, res.fcm$u, res.fcm$v, m=2)
print(idx)

zcebeci/fcvalid documentation built on Oct. 4, 2022, 9:01 p.m.