mcd | R Documentation |
Computes the Minimum Centroid Distance (MCD) to test the result of a fuzzy clustering analysis (Schwaemmle & Jensen, 2010).
mcd(x)
x |
an object of class ‘ppclust’ containing the clustering results from a fuzzy and/or possibilistic clustering algorithm in the package ppclust. Alternatively, it is a numeric data frame or matrix containing the cluster prototypes. |
MCD values for different numbers of clusters (k
) and different values of fuzzy exponent (m
) can be used to compare the results of fuzzy cluster analysis in order find the optimal result. The formula of MCD is:
I_{MCD}=\min\limits_{j \neq l}(||\vec{v_j}-\vec{v_l}||^2)
The optimal clustering is found at the maximum value of MCD.
mcd |
MCD value. |
Zeynel Cebeci
Schwaemmle, V. & Jensen, O.N. (2010). A simple and fast method to determine the parameters for fuzzy c-means cluster validation. <arXiv:http://arxiv.org/abs/1004.1307v1>
allindexes
,
apd
,
cl
,
cs
,
cwb
,
fhv
,
fs
,
kpbm
,
kwon
,
mpc
,
pbm
,
pc
,
pe
,
sc
,
si
,
tss
,
ws
,
xb
# Load the dataset iris and use the first four feature columns data(iris) x <- iris[,1:4] # Run FCM algorithm in the package ppclust res.fcm <- ppclust::fcm(x, centers=3) # Compute the MCD using res.fcm, which is a ppclust object idx <- mcd(res.fcm) print(idx) # Compute the MCD index using V matrix idx <- mcd(res.fcm$v) print(idx)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.