| mcd | R Documentation |
Computes the Minimum Centroid Distance (MCD) to test the result of a fuzzy clustering analysis (Schwaemmle & Jensen, 2010).
mcd(x)
x |
an object of class ‘ppclust’ containing the clustering results from a fuzzy and/or possibilistic clustering algorithm in the package ppclust. Alternatively, it is a numeric data frame or matrix containing the cluster prototypes. |
MCD values for different numbers of clusters (k) and different values of fuzzy exponent (m) can be used to compare the results of fuzzy cluster analysis in order find the optimal result. The formula of MCD is:
I_{MCD}=\min\limits_{j \neq l}(||\vec{v_j}-\vec{v_l}||^2)
The optimal clustering is found at the maximum value of MCD.
mcd |
MCD value. |
Zeynel Cebeci
Schwaemmle, V. & Jensen, O.N. (2010). A simple and fast method to determine the parameters for fuzzy c-means cluster validation. <arXiv:http://arxiv.org/abs/1004.1307v1>
allindexes,
apd,
cl,
cs,
cwb,
fhv,
fs,
kpbm,
kwon,
mpc,
pbm,
pc,
pe,
sc,
si,
tss,
ws,
xb
# Load the dataset iris and use the first four feature columns data(iris) x <- iris[,1:4] # Run FCM algorithm in the package ppclust res.fcm <- ppclust::fcm(x, centers=3) # Compute the MCD using res.fcm, which is a ppclust object idx <- mcd(res.fcm) print(idx) # Compute the MCD index using V matrix idx <- mcd(res.fcm$v) print(idx)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.