kwon: Kwon Index

View source: R/kwon.R

kwonR Documentation

Kwon Index

Description

Computes the Kwon Index (Kwon, 1998) in order to validate the result of a fuzzy and/or possibilistic clustering analysis.

Usage

kwon(x, u, v, m, t=NULL, eta, tidx="f")

Arguments

x

an object of class ‘ppclust’ containing the clustering results from a fuzzy clustering algorithm in the package ppclust. Alternatively, a numeric data frame or matrix containing the data set.

u

a numeric data frame or matrix containing the fuzzy membership values. It should be specified if x is not an object of ‘ppclust’.

v

a numeric data frame or matrix containing the cluster prototypes. It should be specified if x is not an object of ‘ppclust’.

t

a numeric data frame or matrix containing the cluster prototypes. It should be specified if x is not an object of ‘ppclust’ and the option e or g is assigned to tidx.

m

a number specifying the fuzzy exponent. It should be specified if x is not an object of ‘ppclust’.

eta

a number specifying the typicality exponent. It should be specified if x is not an object of ‘ppclust’ and tidx is either e or g.

tidx

a character specifying the type of index. The default is ‘f’ for fuzzy index. The other options are ‘e’ for extended and ‘g’ for generalized index.

Details

Kwon Index (I_{Kwon}) is defined as follows:

I_{Kwon}=\frac{∑\limits_{i=1}^n ∑\limits_{j=1}^k u_{ij}^m \; d_{ij}^2 + \frac{1}{k} \; ∑\limits_{j=1}^k ||\vec{v_i}-\bar{v}||^2}{\min\limits_{j\neq l}^k (||\vec{v_j} - \vec{v}_l||^2)}

The optimal clustering is obtained at the minimum value of I_{Kwon}.

Value

kwon

Kwon index value if tidx is ‘f’

kwon.e

extended Kwon index value if tidx is ‘e’

kwon.g

generalized Kwon index value if tidx is ‘g’

Author(s)

Zeynel Cebeci

References

Kwon, S. H. (1998). Cluster validity index for fuzzy clustering. Electronics Letters, 34(22):2176-2177.<10.1049/el:19981523>

See Also

allindexes, apd, cl, cs, cwb, fhv, fs, kpbm, mcd, mpc, pbm, pc, pe, sc, si, tss, ws, xb

Examples

# Load the dataset iris
data(iris)
x <- iris[,1:4]

# Run FCM algorithm in the package ppclust 
res.fcm <- ppclust::fcm(x, centers=3)

# Compute the Kwon index using res.fcm, which is a ppclust object
idx <- kwon(res.fcm)
print(idx)
 
# Compute the Kwon index using X, U and V matrices
idx <- kwon(res.fcm$x, res.fcm$u, res.fcm$v)
print(idx)

# Run UPFCM algorithm in the package ppclust 
res.upfc <- ppclust::upfc(x, centers=3)
# Compute the generalized Kwon index using res.upfc, which is a ppclust object
idx <- kwon(res.upfc, tidx="g")
print(idx)

zcebeci/fcvalid documentation built on Oct. 4, 2022, 9:01 p.m.