#' Estimate photosynthesis parameters for C4 species using Yin's fitting procedure
#'
#' Using the gas exchange measurement (A_Ci curve), C4 photosynthesis model without
#' carbonic anhydrase and fitting procedure of Yin et al. (2011) to do nonlinear curve
#' fitting (using nlminb package) for estimating photosynthesis parameters (Vcmax,J,
#' Rd,gm and Vpmax) for C4 species using Yin's explicit equations. Make sure to load
#'the "stats" package before intstalling and using the "C4Estimation" package.
#' @param ACi Gas exchange measurement from Li6400 or other equipment.
#' It is a dataframe iput. Ci with the unit of ppm. You can prepare the data in Excel
#' file like the given example and save it as "tab delimited text". Then import data
#' by ACi <- read.table(file = "/Users/haoranzhou/Desktop/Learn R/ACi curve.txt",
#' header = TRUE)
#' @param Tleaf Leaf temperature when A_Ci curve is measured.
#' @param Patm Atmosphere pressure when A_Ci curve is measured.
#' @param alpha1 The fraction of O2 evolution occurring in the bundle sheath.
#' Unless you have enough information, input it as the 0.15.
#' @param x the fraction of total electron transport that are confined to be
#' used for the PEP regeneration out of J, which is the total electron transport.
#' @param CaBreakL Higher bound of Ci below which A is thought to be controled by
#' Rubisco Carboxylation (Ac). Start with 10.
#' @param CaBreakH Lower bound of Ci above which A is thought to be controled by
#' RuBP regeneration (Aj). Start with 50. If the estimation results showed
#' "inadmissible fits", change the CaBreakL and CaBreakH until "inadmissible fits"
#' disappear.
#'
#' @param startp A vector that gives the start points for the estimation
#' @return This package will return a dataframe that contains the following values
#' (c(Vcmax,J,Rd,gm and Vpmax)). You can try with c(30, 150, 3, 10, 50).
#' @return Parameter at leaf temperature: A vector (c(Vcmax,J,Rd,gm and Vpmax))
#' returns the estimation parameters at leaf temperature.
#' @return Parameter at 25°C: A vector (c(Vcmax,J,Rd,gm and Vpmax))
#' returns the estimation parameters at leaf temperature.
#' @return Objective: The final objective value based on
#' the estimation results.
#' @return Convergence: An integer code. 0 indicates successful
#' convergence.
#' @return Message: A character string giving any additional
#' information returned by the optimizer, or NULL. For details, see PORT documentation.
#' @return Iterations: Number of iterations performed.
#' @return Evaluations: Number of objective function and gradient
#' function evaluations.
#' @export
C4EstimateWithoutCAYin <- function(ACi,Tleaf,Patm,alpha1,x,CaBreakL,CaBreakH,startp)
{
A.obs <- ACi$A
Ci.obs <- ACi$Ci*Patm*0.001
O2 <- Patm*0.21*1000
#Temperature adjustment for Kc,Ko,gammastar,Kp from 25°C to Tleaf
Kc<-75.06*exp(36.5*(Tleaf-25)/(298.15*0.008314*(273.15+Tleaf)))
Ko<-35.82*exp(12.8*(Tleaf-25)/(298.15*0.008314*(273.15+Tleaf)))
gammastar<-0.000244*exp(24.82*(Tleaf-25)/(298.15*0.008314*(273.15+Tleaf)))
Kp <- 8.5455*exp(52.2*(Tleaf-25)/(298.15*0.008314*(273.15+Tleaf)))
gbs <-0.029455*exp(116.77*(Tleaf-25)/(298.15*0.008314*(273.15+Tleaf)))*
(1+exp((298.15*0.86-264.6)/298.15/0.008314))/
(1+exp(((273.15+Tleaf)*0.86-264.6)/(273.15+Tleaf)/0.008314))
fn<-function(Param){
Vcmax <- Param[1]
J <- Param[2]
Rd <- Param[3]
gm <- Param[4]
Vpmax <- Param[5]
Rm <- Rd/2
#Useful intermediate
x1_ac <- Vcmax
x2_ac <- Kc/Ko/1000
x3_ac <- Kc
deno_ac <- gm+gbs-x2_ac*gm*alpha1/0.047
x1_aj <- (1-x)*J/4
x2_aj <- 2*gammastar
x3_aj <- 0
deno_aj <- gm+gbs-x2_aj*gm*alpha1/0.047
#Explicit calculation of AEE and AET
d <- gm*(Rm-Vpmax-Ci.obs*(gm+2*gbs)-Kp*(gm + gbs))
f <- gm*gm*(Ci.obs*Vpmax+(Ci.obs+Kp)*(gbs*Ci.obs-Rm))
k <- gm*gm*gbs*(Ci.obs+Kp)
RcPc_p <- (d-(x3_ac+x2_ac*O2)*gm*gbs+(Rd-x1_ac)*(gm+gbs)-
(x1_ac*gammastar*gm+x2_ac*Rd*gm-x2_ac*k/gbs)*alpha1/0.047)/deno_ac
RrPc_p <- (d-(x3_aj+x2_aj*O2)*gm*gbs+(Rd-x1_aj)*(gm+gbs)-
(x1_aj*gammastar*gm+x2_aj*Rd*gm-x2_aj*k/gbs)*alpha1/0.047)/deno_aj
RcPc_q <- (f+(x3_ac+x2_ac*O2)*k+d*(Rd-x1_ac)-
gm*gbs*(x1_ac*gammastar*O2+Rd*(x3_ac+x2_ac*O2))+
(x1_ac*gammastar+x2_ac*Rd)*k*alpha1/0.047/gbs)/deno_ac
RrPc_q <- (f+(x3_aj+x2_aj*O2)*k+d*(Rd-x1_aj)-
gm*gbs*(x1_aj*gammastar*O2+Rd*(x3_aj+x2_aj*O2))+
(x1_aj*gammastar+x2_aj*Rd)*k*alpha1/0.047/gbs)/deno_aj
RcPc_r <- (Rd*(f+(x3_ac+x2_ac*O2)*k)-x1_ac*(f-k*gammastar*O2))/deno_ac
RrPc_r <- (Rd*(f+(x3_aj+x2_aj*O2)*k)-x1_aj*(f-k*gammastar*O2))/deno_aj
RcPc_Q <- (RcPc_p*RcPc_p-3*RcPc_q)/9
RrPc_Q <- (RrPc_p*RrPc_p-3*RrPc_q)/9
RcPc_U <- (2*RcPc_p^3-9*RcPc_p*RcPc_q+27*RcPc_r)/54
RrPc_U <- (2*RrPc_p^3-9*RrPc_p*RrPc_q+27*RrPc_r)/54
RcPc_PHI <- acos(RcPc_U/(RcPc_Q^3)^0.5)
RrPc_PHI <- acos(RrPc_U/(RrPc_Q^3)^0.5)
RcPc <- -2*RcPc_Q^0.5*cos(RcPc_PHI/3)-RcPc_p/3
RrPc <- -2*RrPc_Q^0.5*cos(RrPc_PHI/3)-RrPc_p/3
##Explicit calculation of ATE and ATT
Vpr <- x*J/2
a_ac <- x2_ac*gm*alpha1/0.047-gm-gbs
a_aj <- x2_aj*gm*alpha1/0.047-gm-gbs
b_ac <- gm*(Ci.obs*gbs+Vpr-Rm)+(x3_ac+x2_ac*O2)*gm*gbs+
(x1_ac*gammastar+x2_ac*Rd)*gm*alpha1/0.047+(gm+gbs)*(x1_ac-Rd)
b_aj <- gm*(Ci.obs*gbs+Vpr-Rm)+(x3_aj+x2_aj*O2)*gm*gbs+
(x1_aj*gammastar+x2_aj*Rd)*gm*alpha1/0.047+(gm+gbs)*(x1_aj-Rd)
c_ac <- -gm*(Ci.obs*gbs+Vpr-Rm)*(x1_ac-Rd)+
gm*gbs*(x1_ac*gammastar*O2+Rd*(x3_ac+x2_ac*O2))
c_aj <- -gm*(Ci.obs*gbs+Vpr-Rm)*(x1_aj-Rd)+
gm*gbs*(x1_aj*gammastar*O2+Rd*(x3_aj+x2_aj*O2))
RcPr <- (-b_ac+(b_ac^2-4*a_ac*c_ac)^0.5)/2/a_ac
RrPr <- (-b_aj+(b_aj^2-4*a_aj*c_aj)^0.5)/2/a_aj
#Objective function
Vpc_RcPc <- Vpmax*(Ci.obs-RcPc/gm)/((Ci.obs-RcPc/gm)+Kp)
Vpc_RrPc <- Vpmax*(Ci.obs-RrPc/gm)/((Ci.obs-RrPc/gm)+Kp)
Ac <- (Vpc_RcPc<Vpr)*RcPc+(Vpc_RcPc>=Vpr)*RcPr
Aj <- (Vpc_RrPc<Vpr)*RrPc+(Vpc_RrPc>=Vpr)*RrPr
sum((A.obs-(Ci.obs<=CaBreakL)*Ac-(Ci.obs>=CaBreakH)*Aj-(Ci.obs>CaBreakL)*
(Ci.obs<CaBreakH)*((Ac<Aj)*Ac+(Ac>=Aj)*Aj))^2)
}
#Using constrained optimization package "nloptr" to estimate Vcmax,J,Rd,gm and Vpmax
Est.model <- nlminb(c(startp[1],startp[2] , startp[3], startp[4], startp[5]),
fn, lower=c(0,0,0,0,0), upper=c(200, 600, 20, 30, 200))
Parameters<-Est.model$par
Vcmax <- Parameters[1]
J <- Parameters[2]
Rd <- Parameters[3]
gm <- Parameters[4]
Vpmax <- Parameters[5]
Rm <- Rd/2
#Temperature adjustment for Vcmax,J,Rd,gm and Vpmax from Tleaf to 25°C
Vcmax25<-Parameters[1]/(exp(51.89*(Tleaf-25)/(298.15*0.008314*(273.15+Tleaf))))
J25<-Parameters[2]/(exp(69.246*(Tleaf-25)/(298.15*0.008314*(273.15+Tleaf)))*
(1+exp((298.15*0.609-188.502)/298.15/0.008314))/
(1+exp(((273.15+Tleaf)*0.609-188.502)/(273.15+Tleaf)/0.008314)))
Rd25<-Parameters[3]/(exp(41.85*(Tleaf-25)/(298.15*0.008314*(273.15+Tleaf))))
gm25<-Parameters[4]/(exp(46.533*(Tleaf-25)/(298.15*0.008314*(273.15+Tleaf)))*
(1+exp((298.15*1.2-366.8)/298.15/0.008314))/
(1+exp(((273.15+Tleaf)*1.2-366.8)/(273.15+Tleaf)/0.008314)))
Vpmax25<-Parameters[5]/(exp(65.6905*(Tleaf-25)/(298.15*0.008314*(273.15+Tleaf)))*
(1+exp((298.15*0.47-147.69375)/298.15/0.008314))/
(1+exp(((273.15+Tleaf)*0.47-147.69375)/(273.15+Tleaf)/
0.008314)))
para25<-c(Vcmax25,J25,Rd25,gm25,Vpmax25)
#Calculate the estimation results
#Useful intermediate
x1_ac <- Vcmax
x2_ac <- Kc/Ko/1000
x3_ac <- Kc
deno_ac <- gm+gbs-x2_ac*gm*alpha1/0.047
x1_aj <- (1-x)*J/4
x2_aj <- 2*gammastar
x3_aj <- 0
deno_aj <- gm+gbs-x2_aj*gm*alpha1/0.047
#Explicit calculation of AEE and AET
d <- gm*(Rm-Vpmax-Ci.obs*(gm+2*gbs)-Kp*(gm + gbs))
f <- gm*gm*(Ci.obs*Vpmax+(Ci.obs+Kp)*(gbs*Ci.obs-Rm))
k <- gm*gm*gbs*(Ci.obs+Kp)
RcPc_p <- (d-(x3_ac+x2_ac*O2)*gm*gbs+(Rd-x1_ac)*(gm+gbs)-
(x1_ac*gammastar*gm+x2_ac*Rd*gm-x2_ac*k/gbs)*alpha1/0.047)/deno_ac
RrPc_p <- (d-(x3_aj+x2_aj*O2)*gm*gbs+(Rd-x1_aj)*(gm+gbs)-
(x1_aj*gammastar*gm+x2_aj*Rd*gm-x2_aj*k/gbs)*alpha1/0.047)/deno_aj
RcPc_q <- (f+(x3_ac+x2_ac*O2)*k+d*(Rd-x1_ac)-
gm*gbs*(x1_ac*gammastar*O2+Rd*(x3_ac+x2_ac*O2))+
(x1_ac*gammastar+x2_ac*Rd)*k*alpha1/0.047/gbs)/deno_ac
RrPc_q <- (f+(x3_aj+x2_aj*O2)*k+d*(Rd-x1_aj)-
gm*gbs*(x1_aj*gammastar*O2+Rd*(x3_aj+x2_aj*O2))+
(x1_aj*gammastar+x2_aj*Rd)*k*alpha1/0.047/gbs)/deno_aj
RcPc_r <- (Rd*(f+(x3_ac+x2_ac*O2)*k)-x1_ac*(f-k*gammastar*O2))/deno_ac
RrPc_r <- (Rd*(f+(x3_aj+x2_aj*O2)*k)-x1_aj*(f-k*gammastar*O2))/deno_aj
RcPc_Q <- (RcPc_p*RcPc_p-3*RcPc_q)/9
RrPc_Q <- (RrPc_p*RrPc_p-3*RrPc_q)/9
RcPc_U <- (2*RcPc_p^3-9*RcPc_p*RcPc_q+27*RcPc_r)/54
RrPc_U <- (2*RrPc_p^3-9*RrPc_p*RrPc_q+27*RrPc_r)/54
RcPc_PHI <- acos(RcPc_U/(RcPc_Q^3)^0.5)
RrPc_PHI <- acos(RrPc_U/(RrPc_Q^3)^0.5)
RcPc <- -2*RcPc_Q^0.5*cos(RcPc_PHI/3)-RcPc_p/3
RrPc <- -2*RrPc_Q^0.5*cos(RrPc_PHI/3)-RrPc_p/3
##Explicit calculation of ATE and ATT
Vpr <- x*J/2
a_ac <- x2_ac*gm*alpha1/0.047-gm-gbs
a_aj <- x2_aj*gm*alpha1/0.047-gm-gbs
b_ac <- gm*(Ci.obs*gbs+Vpr-Rm)+(x3_ac+x2_ac*O2)*gm*gbs+
(x1_ac*gammastar+x2_ac*Rd)*gm*alpha1/0.047+(gm+gbs)*(x1_ac-Rd)
b_aj <- gm*(Ci.obs*gbs+Vpr-Rm)+(x3_aj+x2_aj*O2)*gm*gbs+
(x1_aj*gammastar+x2_aj*Rd)*gm*alpha1/0.047+(gm+gbs)*(x1_aj-Rd)
c_ac <- -gm*(Ci.obs*gbs+Vpr-Rm)*(x1_ac-Rd)+
gm*gbs*(x1_ac*gammastar*O2+Rd*(x3_ac+x2_ac*O2))
c_aj <- -gm*(Ci.obs*gbs+Vpr-Rm)*(x1_aj-Rd)+
gm*gbs*(x1_aj*gammastar*O2+Rd*(x3_aj+x2_aj*O2))
RcPr <- (-b_ac+(b_ac^2-4*a_ac*c_ac)^0.5)/2/a_ac
RrPr <- (-b_aj+(b_aj^2-4*a_aj*c_aj)^0.5)/2/a_aj
Vpc_RcPc <- Vpmax*(Ci.obs-RcPc/gm)/((Ci.obs-RcPc/gm)+Kp)
Vpc_RrPc <- Vpmax*(Ci.obs-RrPc/gm)/((Ci.obs-RrPc/gm)+Kp)
Ac <- (Vpc_RcPc<=Vpr)*RcPc+(Vpc_RcPc>Vpr)*RcPr
Aj <- (Vpc_RrPc<=Vpr)*RrPc+(Vpc_RrPc>Vpr)*RrPr
#Write a while loop to compare Ac and Aj
Count<-length(Ci.obs)
limitation <- rep(0,Count)
i <- 1
while (i<=Count){
limitation[i] <- 2*(Ac[i]>=Aj[i])+1*(Ac[i]<Aj[i])
i=i+1
}
#Print out to see whether there is inadmissible fit
print("Print out to see whether there is inadmissible fit")
Ci_name <- "Ci"
limitation_name <- "limitation_state"
df <- data.frame(Ci.obs,limitation)
colnames(df)<-c(Ci_name,limitation_name)
print(df)
#Plot the estimation and observation
print("Plot the observed A and estimated Ac and Aj")
xrange<-max(Ci.obs)
yrange<-max(A.obs)
plot(Ci.obs,A.obs, type="p",col="blue",xlim=range(0,xrange),ylim=range(0,yrange),
pch=20, xlab="Ci(Pa)",ylab="A")
lines(Ci.obs,Ac, type="l",col="red",lwd=2)
lines(Ci.obs,Aj,type="l",col="green",lwd=2)
leg.text<-c("Obs A", "Cal Ac", "Cal Aj")
xrange<-max(Ci.obs)
legend(xrange-20,4,leg.text,col=c("blue","red","green"),pch=c(20,NA,NA),
lty=c(0,1,1),cex=0.5,lwd=c(0,2,2))
#Return the estimation results
EstF<-list(Est.model$par,para25,Est.model$objective,Est.model$convergence,
Est.model$iterations,Est.model$evaluations,Est.model$message)
EstFinal<-setNames(EstF,c("Parameter at leaf temperature","Parameter at 25°C",
"Objective","Convergence","Iterations","Evaluations",
"Message"))
return(EstFinal)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.