R/ddmvnorm.R

Defines functions ddMvnorm

Documented in ddMvnorm

#' @name ddmvnorm
#' @title Normal depth versus depth plot
#' @export
#' 
#' @param x The data sample for DD plot.
#' @param size size of theoretical set
#' @param robust Logical. Default \code{FALSE}. If \code{TRUE}, robust measures are used to specify the parameters of theoretical distribution.
#' @param alpha cutoff point for robust measure of covariance.
#' @param title title of a plot.
#' @param depth_params list of parameters for function depth (method, threads, ndir, la, lb, pdim, mean, cov, exact).
#' 
#' @description
#' Produces a normal DD plot of a multivariate dataset.
#'
#' @details
#' 
#' In the first step the location and scale of x are estimated and theoretical sample from normal distribution with those parameters is generated. The plot presents the depth of empirical points with respect to dataset x and with respect to the theoretical sample.
#' 
#' @return
#' Returns the normal depth versus depth plot of multivariate dataset \code{x}. 
#'
#' @references
#' 
#' Liu, R.Y., Parelius, J.M. and Singh, K. (1999), Multivariate analysis by data depth: Descriptive statistics, graphics and inference (with discussion), Ann. Statist., 27, 783--858.
#' 
#' Liu, R.Y., Singh K. (1993), A Quality Index Based on Data Depth and Multivariate Rank Test, \emph{Journal of the American Statistical Association} vol. 88.
#'
#' @author Daniel Kosiorowski, Mateusz Bocian, Anna Wegrzynkiewicz and Zygmunt Zawadzki from Cracow University of Economics.
#' 
#' @seealso \code{\link{ddPlot}} to generate ddPlot to compare to datasets or to compare a dataset with other distributions.
#'
#' @examples
#' # EXAMPLE 1
#' norm <- mvrnorm(1000, c(0, 0, 0), diag(3))
#' con <- mvrnorm(100, c(1, 2, 5), 3 * diag(3))
#' sample <- rbind(norm, con)
#' ddMvnorm(sample, robust = TRUE)
#' 
#' # EXAMPLE 2
#' data(under5.mort, inf.mort, maesles.imm)
#' data1990 <- na.omit(cbind(under5.mort[, 1], inf.mort[, 1], maesles.imm[, 1]))
#' ddMvnorm(data1990, robust = FALSE)
#' 
ddMvnorm <- function(x, size = nrow(x), robust = FALSE, alpha = 0.05,
                     title = "ddMvnorm", depth_params = list()) {
  ux_list <- list(u = x, X = x)
  depth_sample <- do.call(depth, c(ux_list, depth_params))

  if (robust) {
    varcov <- cov(x[depth_sample >= quantile(depth_sample, alpha), ])
    location <- depthMedian(x, depth_params)
  } else {
    location <- apply(x, 2, mean)
    varcov <- cov(x)
  }

  theoretical <- mvrnorm(size, location, varcov)
  ux_list_theoretical <- list(u = x, X = theoretical)
  depth_theoretical <- do.call(depth, c(ux_list_theoretical, depth_params))
  ddplot <- new("DDPlot", X = depth_sample, Y = depth_theoretical,
                title = title)

  return(ddplot)
}
zzawadz/DepthProc documentation built on July 4, 2018, 10:14 a.m.