Description Usage Arguments Details Value Author(s) References See Also Examples
Computes forecasts for a model with APC structure. Forecasts of the linear predictor are given for all models. This is done for the triangle which shares age and cohort indices with the data.
1 2 | apc.forecast.apc(apc.fit,extrapolation.type="I0",
suppress.warning=TRUE)
|
apc.fit |
List. Output from |
extrapolation.type |
Character. Choices for extrapolating the differenced period parameter ("Delta.beta_per"). Default is "I0".
All methods are invariant to ad hoc identification of the implied period time effect, by following the ideas put forward in Kuang, Nielsen and Nielsen (2008b). |
suppress.warning |
Logical. If true, suppresses warnings from |
The example below is based on the smaller data reserving sets
data.loss.TA
.
linear.predictors.forecast |
Vector. Linear predictors for forecast area. |
index.trap.J |
Matrix. age-coh coordinates for vector. Similar structure to
|
trap.response.forecast |
Matrix. Includes data and point forecasts. Forecasts in lower right triangle. Trapezoid format. |
response.forecast.cell |
Matrix. 4 columns.
1: Point forecasts.
2: corresponding forecast standard errors
3: process standard errors
4: estimation standard errors
Note that the square of column 2 equals the sums of squares of columns 3 and 4
Note that |
response.forecast.age |
Same as |
response.forecast.per |
Same as |
response.forecast.coh |
Same as |
response.forecast.all |
Same as |
xi.per.dd.extrapolated |
The extrapolated double differences. |
xi.extrapolated |
The extrapolated parameters. |
Bent Nielsen <bent.nielsen@nuffield.ox.ac.uk> 10 Sep 2016
Kuang, D., Nielsen, B. and Nielsen, J.P. (2008b) Forecasting with the age-period-cohort model and the extended chain-ladder model. Biometrika 95, 987-991. Download: Article; Earlier version Nuffield DP.
The example below uses Taylor and Ashe reserving see data.loss.TA
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | #####################
# EXAMPLE with reserving data: data.loss.TA()
data <- data.loss.TA()
fit.apc <- apc.fit.model(data,"poisson.response","APC")
forecast <- apc.forecast.apc(fit.apc)
# forecasts by "policy-year"
forecast$response.forecast.coh
# forecast
# coh_2 91718.82
# coh_3 464661.38
# coh_4 704591.94
# coh_5 1025337.23
# coh_6 1503253.81
# coh_7 2330768.44
# coh_8 4115906.56
# coh_9 4257958.30
# coh_10 4567231.84
# forecasts of "cash-flow"
forecast$response.forecast.per
# forecast
# per_11 5274762.58
# per_12 4213526.23
# per_13 3188451.80
# per_14 2210649.45
# per_15 1644203.06
# per_16 1236495.32
# per_17 764552.75
# per_18 444205.71
# per_19 84581.44
# forecast of "total reserve"
forecast$response.forecast.all
# forecast
# all 19061428
|
forecast
coh_2 91718.82
coh_3 464661.38
coh_4 704591.94
coh_5 1025337.23
coh_6 1503253.81
coh_7 2330768.44
coh_8 4115906.56
coh_9 4257958.30
coh_10 4567231.84
forecast
per_11 5274762.58
per_12 4213526.23
per_13 3188451.80
per_14 2210649.45
per_15 1644203.06
per_16 1236495.32
per_17 764552.75
per_18 444205.71
per_19 84581.44
forecast
all 19061428
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.