| rTraitCont | R Documentation |
This function simulates the evolution of a continuous character along a phylogeny. The calculation is done recursively from the root. See Paradis (2012, pp. 232 and 324) for an introduction.
rTraitCont(phy, model = "BM", sigma = 0.1, alpha = 1, theta = 0,
ancestor = FALSE, root.value = 0, ...)
phy |
an object of class |
model |
a character (either |
sigma |
a numeric vector giving the standard-deviation of the random component for each branch (can be a single value). |
alpha |
if |
theta |
if |
ancestor |
a logical value specifying whether to return the values at the nodes as well (by default, only the values at the tips are returned). |
root.value |
a numeric giving the value at the root. |
... |
further arguments passed to |
There are three possibilities to specify model:
"BM": a Browian motion model is used. If the arguments
sigma has more than one value, its length must be equal to the
the branches of the tree. This allows to specify a model with variable
rates of evolution. You must be careful that branch numbering is done
with the tree in “postorder” order: to see the order of the branches
you can use: tr <- reorder(tr, "po"); plor(tr); edgelabels().
The arguments alpha and theta are ignored.
"OU": an Ornstein-Uhlenbeck model is used. The above
indexing rule is used for the three parameters sigma,
alpha, and theta. This may be interesting for the last
one to model varying phenotypic optima. The exact updating formula
from Gillespie (1996) are used which are reduced to BM formula if
alpha = 0.
A function: it must be of the form foo(x, l) where
x is the trait of the ancestor and l is the branch
length. It must return the value of the descendant. The arguments
sigma, alpha, and theta are ignored.
A numeric vector with names taken from the tip labels of
phy. If ancestor = TRUE, the node labels are used if
present, otherwise, “Node1”, “Node2”, etc.
Emmanuel Paradis
Gillespie, D. T. (1996) Exact numerical simulation of the Ornstein-Uhlenbeck process and its integral. Physical Review E, 54, 2084–2091.
Paradis, E. (2012) Analysis of Phylogenetics and Evolution with R (Second Edition). New York: Springer.
rTraitDisc, rTraitMult, ace
data(bird.orders)
rTraitCont(bird.orders) # BM with sigma = 0.1
### OU model with two optima:
tr <- reorder(bird.orders, "postorder")
plot(tr)
edgelabels()
theta <- rep(0, Nedge(tr))
theta[c(1:4, 15:16, 23:24)] <- 2
## sensitive to 'alpha' and 'sigma':
rTraitCont(tr, "OU", theta = theta, alpha=.1, sigma=.01)
### an imaginary model with stasis 0.5 time unit after a node, then
### BM evolution with sigma = 0.1:
foo <- function(x, l) {
if (l <= 0.5) return(x)
x + (l - 0.5)*rnorm(1, 0, 0.1)
}
tr <- rcoal(20, br = runif)
rTraitCont(tr, foo, ancestor = TRUE)
### a cumulative Poisson process:
bar <- function(x, l) x + rpois(1, l)
(x <- rTraitCont(tr, bar, ancestor = TRUE))
plot(tr, show.tip.label = FALSE)
Y <- x[1:20]
A <- x[-(1:20)]
nodelabels(A)
tiplabels(Y)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.