Description Usage Arguments Details Value See Also Examples
Calculate a numerical approximation to the Hessian matrix of a function at a parameter value.
1 2 3 4 5 |
func |
a function for which the first (vector) argument is used as a parameter vector. |
x |
the parameter vector first argument to func. |
method |
one of |
method.args |
arguments passed to method. See |
... |
an additional arguments passed to |
The function hessian
calculates an numerical approximation to
the n x n second derivative of a scalar real valued function with n-vector
argument.
The argument method
can be "Richardson"
or "complex"
.
Method "simple"
is not supported.
For method "complex"
the Hessian matrix is calculated as the Jacobian
of the gradient. The function grad
with method "complex" is used,
and method.args
is ignored for this (an eps
of
.Machine$double.eps
is used).
However, jacobian
is used in the second step, with method
"Richardson"
and argument method.args
is used for this.
The default is
method.args=list(eps=1e-4, d=0.1, zero.tol=sqrt(.Machine$double.eps/7e-7),
r=4, v=2, show.details=FALSE)
. (These are the defaults for hessian
with method "Richardson"
, which are slightly different from the defaults
for jacobian
with method "Richardson"
.)
See addition comments in grad
before choosing
method "complex"
.
Methods "Richardson"
uses genD
and extracts the
second derivative. For this method
method.args=list(eps=1e-4, d=0.1, zero.tol=sqrt(.Machine$double.eps/7e-7),
r=4, v=2, show.details=FALSE)
is set as the default. hessian
does
one evaluation of func
in order to do some error checking before
calling genD
, so the number of function evaluations will be one more
than indicated for genD
.
The argument side
is not supported for second derivatives and since
... are passed to func
there may be no error message if it is
specified.
An n by n matrix of the Hessian of the function calculated at the
point x
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | sc2.f <- function(x){
n <- length(x)
sum((1:n) * (exp(x) - x)) / n
}
sc2.g <- function(x){
n <- length(x)
(1:n) * (exp(x) - 1) / n
}
x0 <- rnorm(5)
hess <- hessian(func=sc2.f, x=x0)
hessc <- hessian(func=sc2.f, x=x0, "complex")
all.equal(hess, hessc, tolerance = .Machine$double.eps)
# Hessian = Jacobian of the gradient
jac <- jacobian(func=sc2.g, x=x0)
jacc <- jacobian(func=sc2.g, x=x0, "complex")
all.equal(hess, jac, tolerance = .Machine$double.eps)
all.equal(hessc, jacc, tolerance = .Machine$double.eps)
|
[1] "Mean relative difference: 3.28453e-10"
[1] "Mean relative difference: 3.29475e-10"
[1] "Mean relative difference: 5.902619e-15"
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.