chebyshev.u.polynomials: Create list of Chebyshev polynomials

View source: R/chebyshev.u.polynomials.R

chebyshev.u.polynomialsR Documentation

Create list of Chebyshev polynomials

Description

This function returns a list with n + 1 elements containing the order k Chebyshev polynomials of the second kind, U_k ≤ft( x\right), for orders k = 0,\;1,\; … ,\;n.

Usage

chebyshev.u.polynomials(n, normalized=FALSE)

Arguments

n

integer value for the highest polynomial order

normalized

a boolean value which, if TRUE, returns a list of normalized orthogonal polynomials

Details

The function chebyshev.u.recurrences produces a data frame with the recurrence relation parameters for the polynomials. If the normalized argument is FALSE, the function orthogonal.polynomials is used to construct the list of orthogonal polynomial objects. Otherwise, the function orthonormal.polynomials is used to construct the list of orthonormal polynomial objects.

Value

A list of n + 1 polynomial objects

1

order 0 Chebyshev polynomial

2

order 1 Chebyshev polynomial

...

n+1

order n Chebyshev polynomial

Author(s)

Frederick Novomestky fnovomes@poly.edu

References

Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.

Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.

Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.

See Also

chebyshev.u.recurrences, orthogonal.polynomials, orthonormal.polynomials

Examples

###
### gemerate a list of normalized U Chebyshev polynomials of orders 0 to 10
###
normalized.p.list <- chebyshev.u.polynomials( 10, normalized=TRUE )
print( normalized.p.list )
###
### gemerate a list of unnormalized T Chebyshev polynomials of orders 0 to 10
###
unnormalized.p.list <- chebyshev.u.polynomials( 10, normalized=FALSE )
print( unnormalized.p.list )

orthopolynom documentation built on Oct. 3, 2022, 5:08 p.m.