show_cor | R Documentation |
All variables must be continuous.
The matrix will be returned as an element of ggplot
object.
This is basically a wrapper of R package
ggcorrplot.
show_cor(
data,
x_vars = colnames(data),
y_vars = x_vars,
cor_method = "spearman",
vis_method = "square",
lab = TRUE,
test = TRUE,
hc_order = FALSE,
p_adj = NULL,
...
)
data |
a |
x_vars |
variables/column names shown in x axis. |
y_vars |
variables/column names shown in y axis. |
cor_method |
method for correlation, default is 'spearman'. |
vis_method |
visualization method, default is 'square', can also be 'circle'. |
lab |
logical value. If TRUE, add correlation coefficient on the plot. |
test |
if |
hc_order |
logical value. If |
p_adj |
p adjust method, see stats::p.adjust for details. |
... |
other parameters passing to |
a ggplot
object
show_sig_feature_corrplot for specific and more powerful association analysis and visualization.
data("mtcars")
p1 <- show_cor(mtcars)
p2 <- show_cor(mtcars,
x_vars = colnames(mtcars)[1:4],
y_vars = colnames(mtcars)[5:8]
)
p3 <- show_cor(mtcars, vis_method = "circle", p_adj = "fdr")
p1
p1$cor
p2
p3
## Auto detect problem variables
mtcars$xx <- 0L
p4 <- show_cor(mtcars)
p4
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.