puzzles: Puzzle completion times from Hays (1994)

Description Format Details Source Examples

Description

Puzzle completion time example data from Hays (1994).

Format

A data frame with 48 observations on 3 variables.

RT

Puzzle completion time, in minutes

ID

the subject identifier

shape

shape of the puzzle (round or square)

color

color content of the puzzle (monochromatic or color)

Details

Hays (1994; section 13.21, table 13.21.2, p. 570) describes a experiment wherein 12 participants complete four puzzles each. Puzzles could be either square or round, and either monochromatic or in color. Each participant completed every combination of the two factors.

Source

Hays, W. L. (1994), Statistics (5th edition), Harcourt Brace, Fort Worth, Texas

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
data(puzzles)

## classical ANOVA
## Both color and shape are significant, interaction is not
classical <- aov(RT ~ shape*color + Error(ID/(shape*color)), data=puzzles)
summary(classical)

## Bayes Factor
## Best model is main effects model, no interaction
anovaBF(RT ~ shape*color + ID, data = puzzles, whichRandom = "ID", progress=FALSE)

Example output

Loading required package: coda
Loading required package: Matrix
************
Welcome to BayesFactor 0.9.12-4.2. If you have questions, please contact Richard Morey (richarddmorey@gmail.com).

Type BFManual() to open the manual.
************

Error: ID
          Df Sum Sq Mean Sq F value Pr(>F)
Residuals 11  226.5   20.59               

Error: ID:shape
          Df Sum Sq Mean Sq F value Pr(>F)  
shape      1   12.0  12.000   7.543  0.019 *
Residuals 11   17.5   1.591                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Error: ID:color
          Df Sum Sq Mean Sq F value  Pr(>F)   
color      1   12.0  12.000   13.89 0.00334 **
Residuals 11    9.5   0.864                   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Error: ID:shape:color
            Df Sum Sq Mean Sq F value Pr(>F)
shape:color  1    0.0   0.000       0      1
Residuals   11   30.5   2.773               
Bayes factor analysis
--------------
[1] shape + ID                       : 2.868124 <U+00B1>1.78%
[2] color + ID                       : 2.830277 <U+00B1>0.88%
[3] shape + color + ID               : 11.55485 <U+00B1>1.71%
[4] shape + color + shape:color + ID : 5.123133 <U+00B1>12.15%

Against denominator:
  RT ~ ID 
---
Bayes factor type: BFlinearModel, JZS

BayesFactor documentation built on May 2, 2019, 5:54 p.m.