Nothing
library(Condens8R)
##
nr <- 100 # features
nc <- 40 # samples
## check binary data predictors
set.seed(97531)
bimat <- matrix(rbinom(nr*nc, 1, 0.45), nrow = nr)
dimnames(bimat) <- list(paste0("B", 1:nr),
paste0("S", 1:nc))
LR <- c("L", "R")
stat <- factor(LR[1 + rbinom(nc, 1, 0.37)], levels = LR)
myMod <- learn(logicModeler, bimat, stat)
table(predict(myMod), stat) # mostly on the diagonal
rantest <- matrix(rbinom(nr*nc, 1, 0.45), nrow = nr)
dimnames(rantest) <- list(paste0("B", 1:nr),
paste0("S", 1:nc))
table(predict(myMod, rantest))
## Now check continous data that get dichotomized
comat <- matrix(rnorm(nr*nc, 0, 1), nrow = nr)
dimnames(comat) <- list(paste0("B", 1:nr),
paste0("S", 1:nc))
coMod <- learn(logicModeler, comat, stat)
table(predict(coMod), stat) # all on the diagonal
table(predict(coMod, rantest))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.