Nothing
library(Condens8R)
new("Node")
cons <- Modeler(learnConstant, predictConstant, value = "XYZ")
try(learn(cons, matrix(), LETTERS, keepAll))
fm <- learn(cons, matrix(), factor(LETTERS), keepAll)
predict(fm)
predict(fm, matrix(NA, nrow=5, ncol = 10))
nr <- 200 # features
nc <- 60 # samples
set.seed(80123)
comat <- matrix(rnorm(nr*nc, 0, 1), nrow = nr)
dimnames(comat) <- list(paste0("F", 1:nr),
paste0("S", 1:nc))
splay <- rep(c(2, -2), each = nc/2)
for(J in 1:30) comat[J, ] <- comat[J, ] + splay
bimat <- Condens8R:::dichotomize(comat)$data
dmat <- Mercator::binaryDistance(bimat, "jaccard")
mySplit <- findSplit(dmat, splitter = "hc")
left <- makeLeaf("XYZ")
right <- makeLeaf("UVW")
cluster <- as.character(mySplit)
cluster[mySplit == "L"] <- predict(left, bimat[, mySplit == "L"])
cluster[mySplit == "R"] <- predict(right, bimat[, mySplit == "R"])
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.