Description Details Author(s) References Examples
MixCluster performs the cluster analysis of mixed data with missing values by using a mixture of Gaussian copulas (Marbac and al, 2015). Thus, it can analyze data sets composed by continuous, integer, binary or ordinal variables. The one-dimensional margins of each component follow classical distributions (Gaussian, Poisson, multinomial) and the intra-class dependencies are modelized. A Gibbs sampler performs the Bayesian inference. Finally, a PCA-type approach per class allows to visualize the individuals per class and summarizes the intra-class dependencies.
Package: | MixCluster |
Type: | Package |
Version: | 1.0 |
Date: | 2014-08-11 |
License: | GPL (>=2) |
The main two functions of MixCluster is MixClusClustering. It performs the parameter estimation by a Gibbs sampler then they respectively perform the cluster analysis. The one-dimensional margins per class are plotted by the function plot. A summary of the results is provided by the function summary. Finally, a scatterplot of the individual using a PCA per class can be drawn by the function MixClusVisu. This function also summarizes the intra-class dependencies by drawing the correlation circle per class. Finally, MixCluster contains three data sets: one simulated data set and two real data sets used in the article Marbac and al (2015).
Matthieu Marbac & Christophe Biernacki & Vincent Vandewalle
Maintainer: Matthieu Marbac <matthieu.marbac@gmail.com>
M. Marbac, C. Biernacki & V. Vandewalle (2015). Model-based clustering of Gaussian copulas for mixed data. Preprint.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | ## Not run:
# Loading of a dataset simulated from a bi-component mixture model of Gaussian copulas
# (see Example 2.2 page 6)
# The first column indicates the class membership
# The last three column are used for the clustering
data(simu)
# Cluster analysis by the bi-component mixture model of Gaussian copulas
# without constrain between the correlation matrices
res.mixclus <- MixClusClustering(simu[,-1], 2)
# Confusion matrix between the estimated (row) and the true (column) partition
table(res.mixclus@data@partition, simu[,1])
# Summary of the model
summary(res.mixclus)
# Visualisation
# Update of the results (computing the conditional expectations of the latent vectors
# related to the Gaussian copulas)
res.mixclus <- MixClusUpdateForVisu(res.mixclus)
# Scatterplot of the individuals (Figure 1.(a)) described by three variables:
# one continuous (abscissa), one integer (ordiate) and one binary (symbol).
# Colors indicate the component memberships
plot(simu[,2:3], col=simu[,1], pch=16+simu[,4], xlab=expression(x^1), ylab=expression(x^2))
# Scatterplot of the individuals in the first PCA-map of the first-component of the model
MixClusVisu(res.mixclus, class = 2, figure = "scatter", xlim=c(-10,4), ylim=c(-4,4))
# Correlation circle of the first PCA-map of the first-component of the model
MixClusVisu(res.mixclus, class = 2, figure = "circle")
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.