MixClusUpdateForVisu: MixClusUpdateForVisu function

Description Usage Arguments Value Examples

View source: R/MixClusVisu.R

Description

This function provides computes the conditional expectation of the latent vectors related to the Gaussian copulas. It must be used before calling the function MixClusVisu.

Usage

1

Arguments

output

An instance of MixClusResults class

Value

An instance of MixClusResults class

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
## Not run: 
# Loading of a dataset simulated from a bi-component mixture model of Gaussian copulas
# (see Example 2.2 page 6)
# The first column indicates the class membership
# The last three column are used for the clustering
data(simu)

# Cluster analysis by the bi-component mixture model of Gaussian copulas
# without constrain between the correlation matrices
res.mixclus <- MixClusClustering(simu[,-1], 2)

# Confusion matrix between the estimated (row) and the true (column) partition
table(res.mixclus@data@partition, simu[,1])

# Summary of the model
summary(res.mixclus)

# Visualisation
# Update of the results (computing the conditional expectations of the latent vectors
# related to the Gaussian copulas)
res.mixclus <- MixClusUpdateForVisu(res.mixclus)

# Scatterplot of the individuals  (Figure 1.(a)) described by three variables:
# one continuous (abscissa), one integer (ordiate) and one binary (symbol).
# Colors indicate the component memberships
plot(simu[,2:3], col=simu[,1], pch=16+simu[,4], xlab=expression(x^1), ylab=expression(x^2))

# Scatterplot of the individuals in the first PCA-map of the first-component of the model
MixClusVisu(res.mixclus, class = 2, figure = "scatter", xlim=c(-10,4), ylim=c(-4,4))

# Correlation circle of the first PCA-map of the first-component of the model
MixClusVisu(res.mixclus, class = 2, figure = "circle")


## End(Not run)

MixCluster documentation built on May 2, 2019, 5:49 p.m.