mpfr-distr-etc | R Documentation |
For some R standard (probability) density, distribution or quantile functions, we provide MPFR versions.
dpois (x, lambda, log = FALSE, useLog = )
dbinom (x, size, prob, log = FALSE, useLog = , warnLog = TRUE)
dnbinom(x, size, prob, mu, log = FALSE, useLog = any(x > 1e6))
dnorm (x, mean = 0, sd = 1, log = FALSE)
dgamma(x, shape, rate = 1, scale = 1/rate, log = FALSE)
dt (x, df, ncp, log = FALSE)
pgamma(q, shape, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE,
rnd.mode = c('N','D','U','Z','A'))
pnorm(q, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
x , q , lambda , size , prob , mu , mean , sd , shape , rate , scale , df , ncp |
|
log , log.p , lower.tail |
logical, see
|
useLog |
|
warnLog |
|
rnd.mode |
a 1-letter string specifying how rounding
should happen at C-level conversion to MPFR, see details of |
pnorm()
is based on erf()
and erfc()
which
have direct MPFR counter parts and are both reparametrizations
of pnorm
, erf(x) = 2*pnorm(sqrt(2)*x)
and
erfc(x) = 2* pnorm(sqrt(2)*x, lower=FALSE)
.
pgamma(q, sh)
is based on our igamma(sh, q)
, see the
‘Warning’ there!
A vector of the same length as the longest of x,q, ...
,
of class mpfr
with the high accuracy results of
the corresponding standard R function.
E.g., for pnorm(*, log.p = TRUE)
to be useful, i.e., not to
underflow or overflow, you may want to extend the exponential range of
MPFR numbers, using .mpfr_erange_set()
, see the examples.
pnorm
,
dt
,
dbinom
,
dnbinom
,
dgamma
,
dpois
in standard package stats.
pbetaI(x, a,b)
is a mpfr
version of
pbeta
only for integer a
and b
.
x <- 1400+ 0:10
print(dpois(x, 1000), digits =18) ## standard R's double precision
(px <- dpois(mpfr(x, 120), 1000))## more accuracy for the same
px. <- dpois(mpfr(x, 120), 1000, useLog=TRUE)# {failed in 0.8-8}
stopifnot(all.equal(px, px., tol = 1e-31))
dpois(0:5, mpfr(10000, 80)) ## very small exponents (underflowing in dbl.prec.)
print(dbinom(0:8, 8, pr = 4 / 5), digits=18)
dbinom(0:8, 8, pr = 4/mpfr(5, 99)) -> dB; dB
print(dnorm( -5:5), digits=18)
dnorm(mpfr(-5:5, prec=99))
## For pnorm() in the extreme tails, need an exponent range
## larger than the (MPFR and Rmpfr) default:
(old_eranges <- .mpfr_erange()) # typically -/+ 2^30:
log2(abs(old_eranges)) # 30 30
.mpfr_erange_set(value = (1-2^-52)*.mpfr_erange(c("min.emin","max.emax")))
log2(abs(.mpfr_erange()))# 62 62 *if* setup -- 2023-01: *not* on Winbuilder, nor
## other Windows where long is 4 bytes (32 bit) and the erange typically cannot be extended.
tens <- mpfr(10^(4:7), 128)
pnorm(tens, lower.tail=FALSE, log.p=TRUE) # "works" (iff ...)
## "the" boundary:
pnorm(mpfr(- 38581.371, 128), log.p=TRUE) # still does not underflow {but *.372 does}
## -744261105.599283824811986753129188937418 (iff ...)
.mpfr_erange()*log(2) # the boundary
## Emin Emax
## -3.196577e+18 3.196577e+18 (iff ...)
## reset to previous
.mpfr_erange_set( , old_eranges)
pnorm(tens, lower.tail=FALSE, log.p=TRUE) # all but first underflow to -Inf
## dnbinom(x, size, ..) for large (x, size): .. already after fixing R-devel dnbinom()
xx <- 6e307
sz <- 1e308
dnb <- curve(dnbinom(xx, sz, prob = x, log=TRUE), 0, 1, n = 1024 + 1,
xlab = quote(prob), main = sprintf("dnbinom(%s, %s, prob=prob, log=TRUE)", xx, sz),
col = 2, lwd=2)
x <- dnb$x
dnbM <- dnbinom(mpfr(xx, 128), mpfr(sz, 128), prob = x, log=TRUE)
lines(x, asNumeric(dnbM), col = adjustcolor(4, 1/3), lwd=5)
## dnbinom(x, size, ..) for large (x, size): ..
for(x.n in list(c(7e305, 1e306), c(7e306, 1e307), c(7e307, 1e308))) {
xx <- x.n[[1]] ; sz <- x.n[[2]] # ============ here, we saw big jumps
dnb <- curve(dnbinom(xx, sz, prob = x, log=TRUE), 0, 1, n = 1024 + 1, col = 2, lwd = 2,
xlab = quote(prob), main = sprintf("dnbinom(%s, %s, prob=prob, log=TRUE)", xx, sz))
x <- dnb$x; mtext(sfsmisc::shortRversion(), adj=1, cex = 3/4)
dnbM <- dnbinom(mpfr(xx, 128), mpfr(sz, 128), prob = x, log=TRUE)
lines(x, asNumeric(dnbM), col = adjustcolor(4, 1/3), lwd=5)
if(dev.interactive()) Sys.sleep(1.5)
}
## pgamma() {and when igamma() is available}:
x <- c(10^(-20:-1), .5, 1:20, 10^(2:20))
xM <- mpfr(x, precBits = 128)
## CAREFUL --- some of these take *infinite* time ...
## subset , as "... infinite time ..."
iOk <- 1e-3 <= abs(x) & abs(x) <= 100
## x = 1e-3 is where our pgamma() {from igamma()} becomes very inaccurate
xm <- xM <- xM[iOk]; x <- x[iOk]
## sh.v <- c(1e-100, 1e-20, 1e-10, .5, 1,2,5, 10^c(1:10, 100, 300))
## sh.v <- c(1e-100, 1e-11, 1e-4, .5, 1,2,5, 10^c(1:5, 10, 100)) # less extreme ..
sh.v <- c(1e-100, 1e-11, 1e-4, .5, 1,2,5, 10^c(1:5,7)) # much less extreme than above ..
FT <- c("F", "T") # for printing
for(scale in c(1/2, 2))
for(sh in sh.v) {
cat(sprintf("scale = %4.3g, shape= %9g: ", scale, sh))
stim <- system.time(
for(ltail in c(FALSE, TRUE))
for(lg in c(FALSE,TRUE)) {
ae <- all.equal(pgamma(xM, sh, scale=scale, lower.tail=ltail, log.p=lg),
pgamma(x , sh, scale=scale, lower.tail=ltail, log.p=lg))
if(!isTRUE(ae))
cat(sprintf(" ltail=%s, lg=%s: NOT eq.: %s", FT[1+ltail], FT[1+lg], ae))
}
)
cat(" user.time: ", stim[["user.self"]], "\n")
} # for (sh ..)
## scale = 0.5, shape= 1e-100: user.time: 0.292
## scale = 0.5, shape= 1e-11: user.time: 0.081
## scale = 0.5, shape= 0.0001: user.time: 0.051
## scale = 0.5, shape= 0.5: user.time: 0.05
## scale = 0.5, shape= 1: user.time: 0.031
## scale = 0.5, shape= 2: user.time: 0.032
## scale = 0.5, shape= 5: user.time: 0.031
## scale = 0.5, shape= 10: user.time: 0.032
## scale = 0.5, shape= 100: ltail=T, lg=T: NOT eq.: Mean abs diff: Inf user.time: 0.029
## scale = 0.5, shape= 1000: ltail=T, lg=T: NOT eq.: Mean abs diff: Inf user.time: 0.02
## scale = 0.5, shape= 10000: ltail=T, lg=T: NOT eq.: Mean abs diff: Inf user.time: 0.019
## scale = 0.5, shape= 100000: ltail=T, lg=T: NOT eq.: Mean abs diff: Inf user.time: 0.022
## scale = 0.5, shape= 1e+10: ltail=F, lg=F: NOT eq.: Numeric: lengths (0, 24) differ
## ltail=F, lg=T: NOT eq.: Mean absolute difference: Inf
## ltail=T, lg=F: NOT eq.: 'is.NA' ...: 0 in current 24 in target
## ltail=T, lg=T: NOT eq.: 'is.NA' ...: 0 in current 24 in target
## user.time: 0.021
## scale = 0.5, shape= 1e+100: gamma_inc.c:290: MPFR assertion failed:
## !(__builtin_expect(!!((flags) & (2)), 0))
## On Windows (erange etc): alread shape = 1e10 leads to the above MPFR assertion fail !!
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.