log1mexp | R Documentation |
\mathrm{log}
(1 +/- \mathrm{exp}
(-a))
Numerically OptimallyCompute f(a) = log(1 - exp(-a)), respectively g(x) = log(1 + exp(x)) quickly numerically accurately.
log1mexp(a, cutoff = log(2))
log1pexp(x, c0 = -37, c1 = 18, c2 = 33.3)
a |
numeric (or |
x |
numeric vector, may also be an |
cutoff |
positive number; |
c0 , c1 , c2 |
cutoffs for |
log1mexp(a) := f(a) = \log(1 - \exp(-a)) = \mathrm{log1p}(-\exp(-a)) = \log(-\mathrm{expm1}(-a))
or, respectively,
log1pexp(x) := g(x) = \log(1 + \exp(x)) = \mathrm{log1p}(\exp(x))
computed accurately and quickly.
Martin Maechler, May 2002; log1pexp()
in 2012
Martin Mächler (2012).
Accurately Computing \log(1-\exp(-|a|))
;
https://CRAN.R-project.org/package=Rmpfr/vignettes/log1mexp-note.pdf.
fExpr <- expression(
DEF = log(1 - exp(-a)),
expm1 = log(-expm1(-a)),
log1p = log1p(-exp(-a)),
F = log1mexp(a))
a. <- 2^seq(-58, 10, length = 256)
a <- a. ; str(fa <- do.call(cbind, as.list(fExpr)))
head(fa)# expm1() works here
tail(fa)# log1p() works here
## graphically:
lwd <- 1.5*(5:2); col <- adjustcolor(1:4, 0.4)
op <- par(mfcol=c(1,2), mgp = c(1.25, .6, 0), mar = .1+c(3,2,1,1))
matplot(a, fa, type = "l", log = "x", col=col, lwd=lwd)
legend("topleft", fExpr, col=col, lwd=lwd, lty=1:4, bty="n")
# expm1() & log1mexp() work here
matplot(a, -fa, type = "l", log = "xy", col=col, lwd=lwd)
legend("left", paste("-",fExpr), col=col, lwd=lwd, lty=1:4, bty="n")
# log1p() & log1mexp() work here
par(op)
aM <- 2^seqMpfr(-58, 10, length=length(a.)) # => default prec = 128
a <- aM; dim(faM <- do.call(cbind, as.list(fExpr))) # 256 x 4, "same" as 'fa'
## Here, for small 'a' log1p() and even 'DEF' is still good enough
l_f <- asNumeric(log(-faM))
all.equal(l_f[,"F"], l_f[,"log1p"], tol=0) # see TRUE (Lnx 64-bit)
io <- a. < 80 # for these, the differences are small
all.equal(l_f[io,"F"], l_f[io,"expm1"], tol=0) # see 6.662e-9
all.equal(l_f[io,"F"], l_f[io, "DEF" ], tol=0)
stopifnot(exprs = {
all.equal(l_f[,"F"], l_f[,"log1p"], tol= 1e-15)
all.equal(l_f[io,"F"], l_f[io,"expm1"], tol= 1e-7)
all.equal(l_f[io,"F"], l_f[io, "DEF" ], tol= 1e-7)
})
## For 128-bit prec, if we go down to 2^-130, "log1p" is no longer ok:
aM2 <- 2^seqMpfr(-130, 10, by = 1/2)
a <- aM2; fa2 <- do.call(cbind, as.list(fExpr))
head(asNumeric(fa2), 12)
tail(asNumeric(fa2), 12)
matplot(a, log(-fa2[,1:3]) -log(-fa2[,"F"]), type="l", log="x",
lty=1:3, lwd=2*(3:1)-1, col=adjustcolor(2:4, 1/3))
legend("top", colnames(fa2)[1:3], lty=1:3, lwd=2*(3:1)-1, col=adjustcolor(2:4, 1/3))
cols <- adjustcolor(2:4, 1/3); lwd <- 2*(3:1)-1
matplot(a, 1e-40+abs(log(-fa2[,1:3]) -log(-fa2[,"F"])), type="o", log="xy",
main = "log1mexp(a) -- approximation rel.errors, mpfr(*, prec=128)",
pch=21:23, cex=.6, bg=5:7, lty=1:2, lwd=lwd, col=cols)
legend("top", colnames(fa2)[1:3], bty="n", lty=1:2, lwd=lwd, col=cols,
pch=21:23, pt.cex=.6, pt.bg=5:7)
## -------------------------- log1pexp() [simpler] --------------------
curve(log1pexp, -10, 10, asp=1)
abline(0,1, h=0,v=0, lty=3, col="gray")
## Cutoff c1 for log1pexp() -- not often "needed":
curve(log1p(exp(x)) - log1pexp(x), 16, 20, n=2049)
## need for *some* cutoff:
x <- seq(700, 720, by=2)
cbind(x, log1p(exp(x)), log1pexp(x))
## Cutoff c2 for log1pexp():
curve((x+exp(-x)) - x, 20, 40, n=1025)
curve((x+exp(-x)) - x, 33.1, 33.5, n=1025)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.