sumBinomMpfr | R Documentation |
Compute (alternating) binomial sums via high-precision arithmetic.
If sBn(f, n) :=
sumBinomMpfr(n, f)
, (default
alternating
is true, and n0 = 0
),
sBn(f,n) = \sum_{k = n0}^n (-1)^(n-k) {n \choose k}\cdot f(k) = \Delta^n f,
see Details for the n
-th forward difference operator
\Delta^n f
. If alternating
is false, the
(-1)^(n-k)
factor is dropped (or replaced by 1
) above.
Such sums appear in different contexts and are typically challenging,
i.e., currently impossible, to evaluate reliably as soon as n
is
larger than around 50--70
.
sumBinomMpfr(n, f, n0 = 0, alternating = TRUE, precBits = 256,
f.k = f(mpfr(k, precBits=precBits)))
n |
upper summation index (integer). |
f |
|
n0 |
lower summation index, typically |
alternating |
logical indicating if the sum is alternating, see below. |
precBits |
the number of bits for MPFR precision, see
|
f.k |
can be specified instead of |
The alternating binomial sum sB(f,n) := sumBinom(n, f, n0=0)
is
equal to the n
-th forward difference operator \Delta^n f
,
sB(f,n) = \Delta^n f,
where
\Delta^n f = \sum_{k=0}^{n} (-1)^{n-k}{n \choose k}\cdot f(k),
is the n
-fold iterated forward difference
\Delta f(x) = f(x+1) - f(x)
(for x = 0
).
The current implementation might be improved in the future, notably
for the case where
sB(f,n)=
sumBinomMpfr(n, f, *)
is to be computed for a whole sequence
n = 1,\dots,N
.
an mpfr
number of precision precBits
.
s
. If alternating
is true (as per default),
s = \sum_{k = n0}^n (-1)^k {n \choose k}\cdot f(k),
if alternating
is false, the (-1)^k
factor is dropped (or
replaced by 1
) above.
Martin Maechler, after conversations with Christophe Dutang.
Wikipedia (2012) The N\"orlund-Rice integral, https://en.wikipedia.org/wiki/Rice_integral
Flajolet, P. and Sedgewick, R. (1995) Mellin Transforms and Asymptotics: Finite Differences and Rice's Integrals, Theoretical Computer Science 144, 101–124.
chooseMpfr
, chooseZ
from package gmp.
## "naive" R implementation:
sumBinom <- function(n, f, n0=0, ...) {
k <- n0:n
sum( choose(n, k) * (-1)^(n-k) * f(k, ...))
}
## compute sumBinomMpfr(.) for a whole set of 'n' values:
sumBin.all <- function(n, f, n0=0, precBits = 256, ...)
{
N <- length(n)
precBits <- rep(precBits, length = N)
ll <- lapply(seq_len(N), function(i)
sumBinomMpfr(n[i], f, n0=n0, precBits=precBits[i], ...))
sapply(ll, as, "double")
}
sumBin.all.R <- function(n, f, n0=0, ...)
sapply(n, sumBinom, f=f, n0=n0, ...)
n.set <- 5:80
system.time(res.R <- sumBin.all.R(n.set, f = sqrt)) ## instantaneous..
system.time(resMpfr <- sumBin.all (n.set, f = sqrt)) ## ~ 0.6 seconds
matplot(n.set, cbind(res.R, resMpfr), type = "l", lty=1,
ylim = extendrange(resMpfr, f = 0.25), xlab = "n",
main = "sumBinomMpfr(n, f = sqrt) vs. R double precision")
legend("topleft", leg=c("double prec.", "mpfr"), lty=1, col=1:2, bty = "n")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.